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S Pose = Position + Rotation
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Translation: 3
Rotation: 3

Total: 6 / F T

A moving body = Pose or Configuration
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Position Description

P
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——

Fig. 5.12 Spatial description

.. (5.10)
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Orientation Description

1. Direction cosine representation

2. Fixed-axes rotations

3. Euler angles representation

4. Single- and double-axes rotations

5. Euler parameters representation
| will illustrate the first TWO only




The McGraw-Hill Companies

@ McGraw-Hill Education

Direction Cosine Representation

P

Refer to Fig. 5.12 "

e
e
——

P =pu + PV + p,Ww
.. (5.12)

Moving frame, M

/Py f/Y\

/ ’ ]
S Fixed frame, I

u=u,Xx+uy+u,z
... (5.114a)

V=V, X+Vv y+v,z Ay
... (5.11b) * U

— Fig. 5.12 Spatial description
W—WXX+Wyy+WZZ

... (5.11c)
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Substitute egs. (5.11a-c) into eq. (5.12)

P = (PuUy t Py + PuW)X + (PyUy + PV, + Py W)Y

+ (Pyu, + PV, + pyW,)Z ... (5.13)
pX — uxpu + VXpV + WXpW e (514&)
py, =u,p, +Vv,p, +wWp, ..+ (5.14Db)
pZ — uzpu + VZpV + WZpW e (514C)

[P]-=Q [Plw ... (5.15)
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[p]F Q [p]l\/l ... (3.19)
OX pu _uX v, WX_ _uTX vIx WTX_

[Pl = Dy [PLo=| By, | Q=juy vy Wy | = uly vy wly
u v W ulz vlz w'z
0) pW "z 'z "z L |

L. - .. (5.16)

Orientation description 1

u'u=viv=w'w=1, and
u'vi=zviu) =u'w(=wiu) =viwiwv) =0 ... (5.17)

Q iIs called Orthogonal
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Due to orthogonality

uxv=w, vxw=uand wxu=v ...(5.18)

Q'Q=0QQT=1: det(Q)=1; QL=QT...(5.19)
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Example 5.6 Rotations [Elementary] (Fig. 5.13a)

H — —_

5 [Ca

E [ulr = SOC ; Frame, M

= 0

o V

- - —

_'q__J) _ —_

E _SOC Z, WA Vv

vl. =| Ca |, 0‘ -
0 ~"' K

Al Frame, I

[w]e

0
0
1

Fig. 5.13 (a) Rotation about Z-axis

... (5.20)
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Ca —Sa O]
Q,={Sa Ca O ...(5.21)
0 0 1]
" Cp 0 Sp| 1 0 0 |
Q= 0 1 0 | Qx=|0 Cyr -Sy
S 0 CH 0 Sy Cyp
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Non-commutative Property: An lllustration
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Fig. 5.20 Successive rotation of a box about Z and Y-axes



12 The McGraw-Hill Companies
@ McGraw-Hill Education

Non-commutative Property (contd.)

Z Z
) W A
] 1)
I
| G — ]
: p: I/ : » )
S — -  S— - R
/ oy /,’ / 1
/ / 2 , r/ C
X U N
(a) v Z Y (b

/

X

Fig. 5.21 Successive rotation of a box about Y and Z-axes
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Recap

« QOrientation representations

— Non-commutative

* Direction cosines: Has disadv. of 9 param.

* Fixed-axes (RPY) rotations (12 sets)
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Homogeneous Transformation

P
7, W
V
0 P
OM
(0]
O / v
F U

X

Task: Point P is known in moving frame M. Find P in fixed frame F.

Fig. 5.23 Two coordinate frames
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p=o0+p ... (5.45)
[Pl = [0] + Q[P ]y ... (5.46)

Pl | [ Q [ol: |[[P 1w (54
1 o' 1 1

[Pl = TIP1y 09
Homogenous Transformation
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T: Homogenous transformation matrix (4 x 4)

TTT-1 or T71t=xTT ... (5.49)
- . _
T1 = C(?)T -Q . o]~ .. (5.50)

Example 5.10 Pure Translation

S 1 0 0 O
M 0 1 0 2
T =
1 - 0 0 1 1
/ 0 0 0 1
/D .. (551)

Fig. 5.24 (a)
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Example 5.11 Pure Rotation

S (C30° —-S30° 0 O
\ . S30° C30° 0 O
v 0 0 1 0
4 0 O 0 1]
F 30° Ly 3 1 90
2 2
30° — 1 \F 0O 0
2 2
X YU 0 0 1 O
0 0O 0 1
Fig. 5.24 (b) - -

.. (5.52)
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Non-commutative Property

Like rotation matrices homogeneous transformation
matrices are non-commutative, 1. e.,

ToTg#TgT,
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Denavit and Hartenberg (DH) Parameters

 Serial chain

- Two links connected
by revolute or
prismatic joint

* Four parameters

— Joint offset (b)

— Joint angle (6)

— Link length (a) |

— Twist angle () End-effector
Fig. 5.27 Serial manipulator
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e Jointaxisi: Link I-1 + link |
* Linki: Fixed to frame i+1 (Saha) / frame i (Craig)

\
@ McGraw-Hill Education

DH Variables Constants
b, and & a; and o; Zofer 2
Screw@Z Screw@X dommes
1 Ziva
Cralg Xl_lxl@zl l ' Lk ,/' Jointi+ 1

<7

\2@% | A

(a) The ith joint is revolute
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* b, (Joint offset): Length of the intersections of the
common normals on the joint axis Z, I.e., O, and
O’ Itis the relative position of links 1 — 1 and I.
This Is measured as the distance between X,
and X; , , along e

Joint 7

Zivy

/

/ F A
; Jomt i+ 1
/

Zr' |

Link /-1
Jointi— |

(a) The /th joint is revolute
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« @ (Joint angle): Angle between the orthogonal projections of
the common normals, X; and X. ., ;, to a plane normal to the
joint axes Z;. Rotation Is positive when it is made counter
clockwise. It is the relative angle between links i — 1 and 1.
This is measured as the angle between X, and X, . ; about Z..

Zi+1

7

/ . .
;/ Jomt i+ 1
/

Zil

Linki—1
Joint 7 — |
‘\

(a) The ith joint is revolute

Ilf_‘ A

(a) The ith joint is revolute
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* g, (Link length): Length between the O%and O,
+1 Thisis measured as the distance between
the common normals to axes Z and Z , ; along
X1 2,2, 2,

Joint /

Zi+1

Y,

/ . A
/) Jomti+1
/

(a) The /th joint is revolute
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« ¢; (Twist angle): Angle between the orthogonal
projections of joint axes, Z; and Z;,, onto a plane
normal to the common normal. This Is measured as
the angle between the axes, Z and Z , ,, about axis X
+1 o be taken positive when rotation is made counter

clockwise. 225,23

Joint i

Zr‘l

Linki—1
Joint7 — |

(a) The ith joint is revolute
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Revolute Joint

« DH@Z (Variable) « DH@X (Const.)
— Joint offset (b) 2,24, 2" — Link length (a)
— Joint angle (6) — Twist angle ()

Zi+1

,

/ . .
; Jomt i+ |

Zl' |

Linki—1
Jomti— 1
‘\

Link /

0, ::rH\ X

Fig. 5.28 (a) The /th joint is revolute
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Mathematically
* Translation along Z,

1 0 0 O]
SR Y ... (5.60a)
O O 1 by

O O O

* Rotation about Z,

T, =

Co. —So. 0] o
% 1 o 0O 1 0
0 0 0 1
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* Translation along X, ,

T

a

1 0 O
0

0 1
0 0 1
0 0

0

a.

0
0
1

* Rotation about X, ,

T

(04

1 O 0

O Ca, —Sag,
O Sa,  Cag,
O O 0

R O O o

... (5.60c)

... (5.60d)

@ McGraw-Hill Education
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* Total transformation from Frame 1 to Frame 1+1

T.=T,T,T.T, ... (5.61a)

Do it yourself!

Rotation
Matrix

uolIsod
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Spherical-type Arm 2.2,

* DH-parameters

Link| b; 6 a | o
1
2 Fill-up the DH parameters
3

RoboAnaI Zer | Fig. 5.32 A spherical arm


C:/Users/SAHA/Desktop/RoboAnalyzer.lnk
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PUMA 560

Shape of #3 1s
not symmetric

i 7 T

@ McGraw-Hill Education

Variable | Constant
DH DH

b; g | & &
0 6 | 0 -712
0 6, a, | O

B;| 6 a; | -2
b, | 6 | O 72
0 g | O - 712
0 g | 0 | O

Fig. 5.35 PUMA 560 and its frames
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Forward and Inverse Kinematics

End-effector’s motion

i

AN

Forward: One soln

-

~

pPY +
Adimniy

Direct Kinematics

!

Y
Inverse: 1st soln.

Inverse: nth soln.

A\l

)

‘suba ‘ul-uo

o

9A|0S

Forward and inverse kinematics

0,

SO

A

=

Joint motions
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Three-link Planar Arm

* DH-parameters
Link | b; 6 a | o

@ McGraw-Hill Education

1

2 Fill-up the DH
parameters

3

e Frame transformations

(Homogeneous) W22
Fig. 5.29 A three-link planar arm

Fill-up with the elements

T. = fori1=1,2,3
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DH Parameters of Articulated Arm

Link| b, | 6, a, | o
0 (6,(3V)| O |—T1/2
06,JV)| a, | O
0 [0;(JV)| a3 | O

Fig. 5.29 An articulated arm
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Matrices for Articulated Arm

¢, 0 -s O c, — s, 0 auc,]
T - s 0 ¢ O T, = S, C, 0O a,s,
0 -1 0 O 0 0 1 O
0 0 0 1 0 0 0 1
(c, — s, 0 a.,]
S C 0O a,s |
T = 3 3 3%3 '
*~lo o0 1 o0 _M__M_LAE
| 0 0 O 1 |
C1C23 C1S23 =31 G (azcz T a3C53 )
T = S1C23 51523 Cy S1 (a2c2 T a3C,3 ) (6 11)
— S23 — Ca3 0 —(a,s, + a3523)
O O O 1



../../roboanalyzer/RoboAnalyzer6/RoboAnalyzer6.exe
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Inverse Kinematics

* Unlike Forward Kinematics, general solutions

are not possible.

« Several architectures are to be solved

differently.
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Two-link Arm
P, =aC +a,C,
py — alsl T a2 S12

L _ PP A —a
2 24, a,
s, =++/1—C

6, = atan2 (s,, C,)

S _(a1 +32C2) Py —a,5; Py
L=

@ McGraw-Hill Education

X
Y, Y, / 3 §
________________________ ' S
0, / >
a | 3
216, X, QD
2 ; IN
a, L
7 .
o 91 : > X
Py 1

A
_ (8, +a,C, ) Py +a,S,

C, p

A=aj +a; +2a,a,c, = p; + py

6, = atan2 (s, ¢,)



../../roboanalyzer/RoboAnalyzer6/RoboAnalyzer6.exe
../../../../saha-software/roboanalyzer/RoboAnalyzer 7.1
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Inverse Kinematics of 3-DOF RRR Arm

i
7”2 Wrist, W(w,, w,)

§0= H]_ +82 +93 (6183)

Py =a4,C; +a, G, +a3C153
. (6.18b)
Py = a5, +a; 51 +aA35123 s
. (6.18¢c) & -

Fig. 6.3 Kinematics of a three-link planar arm

W, =p, —a,Cp =a,C, +a,C,, ... (6.19a)
Wy =Py =835 ¢ =a; 5 +3,5; ... (6.19b)
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W4, + W4 = a+ a® +2a,a,c, ... (6.20a)

W +wW: —a’ —as >
C,= s, =x+1—c5 ...(6.20b,c)
’ 2a, a, 2 \/ ?
6, = atan2 (s,, C,) ... (6.21)
W, =(a +a,C,)C, —a,5,5, ... (6.222)
w, =(a; +a,C, )s; +a,C;S, ... (6.22b)
o (B +30)W, —3,S5W, (8 +3,C, )W, +38,5,W,
b A L A
A=a; +a; +2aa,c, =W, +W, - (6.232,b)
6, = atan2 (s, ¢,) ... (6.23c)
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Numerical Example
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* An RRR planar arm (Example 6.15). Input

4.23

1.86

O 0 O 1

where ¢ = 60°, and a, = a,= 2 units, and a; = 1 unit.

Do it yourself = Verify using RoboAnalyzer



../../roboanalyzer/RoboAnalyzer6/RoboAnalyzer6.exe
C:/Users/SAHA/Desktop/RoboAnalyzer.lnk
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...(6.30b)

Using egs. (6.13b-c), ¢, =0.866, and s, = 0.5,
0, = 30°

Next, from egs. (6.16a-b), s, =0, and c,= 0.866.
g, = 0°.

Finally, from eq. (6.17) ,
o, = 30°.

Therefore 6, = 0° 6, = 30°, and 6, = 30

The positive values of s, was used in evaluating &, = 30°.

The use of negative value would result in :

6, = 30° 6, = -30°, and 6, = 60°

...(6.30c)


../../roboanalyzer/RoboAnalyzer6/RoboAnalyzer6.exe
../../../book/robotics/revision07-08/ch6ikin3.m
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Watch

 Forward and Inverse Kinematics: Watch 3/3 of
IGNOU Lectures [29min]

https://www.youtube.com/watch?v=duKD8cviBTI

« For more clarity: Watch 12 of Addis Ababa
Lectures [77 min]

[https.//www.youtube.com/watch?v=NXWzkl1toze4

* Robotics (13 of Addis Ababa Lectures): Inverse
Kinematics [82 min]

https://www.youtube.com/watch?v=ulP3YIJLIEM



https://www.youtube.com/watch?v=duKD8cvtBTI
https://www.youtube.com/watch?v=NXWzk1toze4
https://www.youtube.com/watch?v=ulP3YiJLiEM

e .
.s{ | } If Jointi iIsrevolute J, E{
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Velocity Analysis
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Jacobian maps joint rates into end-effector’s velocities. It
depends on the manipulator configuration.

\Y

e

: ® : :
twistof end - effector : t, z{ e}; Joint rates: 0 =

e

t,=J0 whereJ=[j j, - j,]and

] € €, Ch
€ XA, €, XAy €h Xape - (6.86)

n

} If Joint 1 is prismatic

€ X e € Xa;
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Jacobian of a 2-link Planar Arm

J :[elxale €, ><aZe]

wheree, =e, = [0 0 1]

ale = al + E':l2
_ T
— [alcl + a2(:12 a151 + a2312 O]
dy, =8,

E[a2C12 AP O]T

Hence, J =

_alsl_az S12 _az S12

4G +a,Cp d, Cpp

End-effector, P (p,, p,)

Yl
A
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Example: Singularity of 2-link RR Arm

— a5y — A5y, —aAySyy
€5 +a,Cpy AyCqp |

<
I

&=0o0rr

(a) Stretched (b) Folded

Figure 7.9 Singular configurations of a two-link planar arm
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Statics and Manipulator
Design (Ch. 7)
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Principle of Virtual Work

W, dx=1'50 .. (7.28)

* Relation between two virtual displacements
(Can be derived from velocity expression)

SX = J50 .. (7.29)
w!J80=1'50 w. J=1' .. (7.31)

t=J'w ... (7.32)

e
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Example: 2-link RR Planar Arm

— [e1]I [n01]1

1
Y;
=a, 1,80, +(a, +a,cb, )f, \Q//' 3

[ez]z [n12]2 =&, fy

t=J'f

J' =

=
Il
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Two Jacobian Matrices

* From 8,50, 0
Statics J=|ach,+ a, a,
e From - ]
—a;S) —aAy31,  — 835y,

Kinematics J=

- a,C; +a,Cy5 AyCqp |
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Jacobian from Statics in Frame 1

cd, —-s6, 0]co, -s8, 0| aso,
[J],=|s6, c6, O0|so, c6, O0|achd+a, a,
0 0 1| O 0 1 0 0

— alsel_ a‘28912 o a'25‘912_
=| a,co,+ a,co, a,co,,
0 0 ... (7.34)

 Without the last row, It IS the same as
the one from kinematics < Should be!
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* High investment in robot usage - low
technological level of mechanical structure

* Functional Requirements

* Kinetostatic Measures
 Structural Design and Dynamics
* Economics
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Functional Requirements of a
Robot b

ON

Payload X
Mobility V% m
Configuration |

4

VA .
- roll device

Figure 7.6 A tilt and roll device provides additional DOF to the robot system

Speed, Accuracy and Repeatability
Actuators and Sensors
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Figure 7.7 Workspace of a 2-DOF RP planar manipulator

b <b<b_,for 0° <@ <360°
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Dexterity and Manlpulablllty

» Dexterity - w, = det(J) ... (7.44)

+ Manipulability > w,, = +/det(JJ")

* Nonredundant manipulator = square
Jacobian

w,, = |det(J) W, =W

m
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Motor Selection (Thumb RuIMe7

Education

Rapid movement with high torques (>
3.5 kW): Hydraulic actuator

< 1.5 kW (no fire hazard): Electric
motors

1-5 kW: Availability or cost will
determine the choice
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Simple Calculation

2 m robot arm to lift 25 kg mass at 10
rpm

 Force =25x9.81=245.25 N

* Torque =245.25x 2 =490.5 Nm

« Speed =27 x 10/60 = 1.047 rad/sec

 Power = Torque x Speed = 0.513 kW

« Simple but sufficient for approximation

@ McGraw-Hill Education
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Practical Application
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Subscript | for load; m for motor;
G = w/w, (< 1); n: Motor + Gear box efficiency
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Accelerations & Torgues

g —a

]

.if

Ang. accn. during £: Zero (Const. Vel.)

. iy, — U
Ang. accn. during £ <5 =
& 3 &
Torque during ¢: 7, = ﬂﬁ?fﬂﬂﬁ?}g

Ang. accn. during £: &=

&
Torque during ¢, 7, = T};

3 s
Torque during &5 75 = (IH?;E;.HE_T}E
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Motor Performance
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Final Selection

* Peak speed and peak torque
requirements , where Ty, IS max of

(magnitudes) T,, T,, and

3

* Use individual torgue and RMS values
+ Performance curves provided by the

manufacturer.

* Check heat generation + natural

frequency of the drive.
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Dynamics and Control
Measures

* Rule of Thumb

o, <—w  ..(751
=5 (7.51)

@, : closed-loop natural frequency

@,  lowest structural resonant frequency
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Manipulator Stiffness

{5

Output shaft

Link

equivalent stiffness

Input shaft ;--~emosm—em—es
Yau : Gear box !
Motor ; :
77777777 i E
Figure 7.11 Shaft assembly of a link
S 748)
ko (199

1] = gear ratio
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Link Material Selection
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Mild (low carbon) steel:

S, =350 Mpa; 5, =420 Mpa

High alloyed steel

S, =1750-1900 Mpa; S, = 2000-2300
Mpa

Aluminum

S, = 150-500 Mpa; 5, = 165-580 Mpa
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Driver Selection

* Driver of a DC motor: A hardware unit
which generates the necessary current
to energize the windings of the motor

« Commercial motors come with
matching drive systems
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Summary

 Forward Kinematics

e |nverse kinematics

— A spatial 6-DOF wrist-portioned has 8
solutions

* Velocity and Jacobian
* Mechanical Design
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