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Ahsfrcrct - Robot selection for an application is 
generally done based on experience, intuition and 
at most using the kinematic considerations like 
workspace, manipulability. etc. Dynamics is 
ignored at this stage even though it is widely used 
for robot control and simulation purposes. This 
paper uses dynaniic characteristics of a robot, 
namely, the computational simplicity of the 
matrices associated with its dynamic equations of 
motion, i.e., the Generalized Inertia Matrix, (GIM) 
and the Matrix of Convective Inertia (MCI) terms. 
Simplification of thcse matrices occurs due to 
specific values of the robot parameters like link 
masses and lengths, joint sequences, etc. Hence, 
these parameters can be used as design variables to 
make some elements of the GIM and MCI vanish 
or constant. Explicit expressions of the GIM and 
MCI elements are available duc to the use of the 
concept of the Decoupled Natural Orthogonal 
Compliment (DeNOC) matrices, introduced 
elscwhcre, in deriving the dynamic equations of 
motion of the robots under study. Selection of robot 
parameters based on GlM and MCI simplification 
eases both the control and simulation tasks of the 
chosen robot, hence. will improve its speed, 
precision and stability. 
Keywords: Robot, Selection, DeNOC, GIM, MCI, 
Computational Coniplexity. 

1 INTRODUCTION 
A robot is characterized by its degree of freedom, 
nuniber of joints, type of joints, joint placement, 
link lengths and shapes, and their orientation which 
influence its performances, namely, the workspace, 
manipulability, ease and speed of operation, etc. 
The speed of operation significantly depends on the 
complexities of the kinematic and dynamic 
equations and their computations. Hence, in order 
to select a suitable robot, both aspects of kinematics 
and dynamics should be looked into. Generally, 
kinematic characteristics like workspace, etc. are 
considered for the selection of a robot in an 

application. Dynamics is neglected even though 
they are widely used for control and simulation of 
robots. In this paper, simplicity of dynamic model 
and its computations are emphasized, particularly, 
with respect to the Generalized Inertia Matrix 
(GIM) and the Matrix of Convective Inertia (MCI) 
terms arising from the dynamic equations of 
motion. The simplicity of the matrices is 
emphasized here because for example, if the GIM 
is diagonal then the robot control is decoupled, i.e., 
each actuator can be controlled independently that 
will improve overall robot performances (speed and 
precision). Besides, the simulation i n  which. the 
inversion of the GIM is required beconies straight 
forward, as for a diagonal matrix its inversion is 
just another diagonal matrix whose diagonal 
elements are the reciprocals of the original matrix. 

Earlier work on robot selection is based on the 
workspace and payload capacity, for example, 
those reported in Rivin (1988), Dorf and Nof 
(1988), and others. Another measure is thc ease of 
changing the position and orientation of the end- 
effector, i.e., maniptilability (Yoshikawa, 1998). 
All these concepts are kinematic ones, where the 
ami dynamics, i.e., mass and inertia of the links, 
are ignored. In this paper, one aspect of dynamics 
(Bhangale et al., 2001), namely, the simplicity of 
the Generalized Inertia Matrix (GIM) and the 
Matrix of Convective Inertia (MCI) terms 
associated with the dynamic equations of motion of 
a robot is used. 

To derive the dynamic equations of motion of a 
robot manipulator, one of the two fundamental 
approaches, i.e., Newton-Euler (NE) (Fu et al., 
1987) or Eider-Lagrange (EL) (Meirovitch, 1970) 
is used. In this paper, the dynamic model is 
developed using the NE equations and the concept 
of the Decoupled Natural Orthogonal Compliment 
(DeNOC) (Saha, ,1999). The DeNOC concept 
allows one to write the elements of the GIM and 
MCI in explicit analytical forms. These forins led 
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to the development of recursive dynamics 
algorithms for both the inverse and forward 
dynamics of serial (Saha, 1959; 2003), and parallel 
(Saha and Schiehlen, 2001) robotic systems. 
Besides, the explicit expressions can be used to 
simplify the GIM and MCI, which is explored in 
this paper for robot selection. 

This paper is organized as follows: Section 2 
outlines the dynamic modeling using the 
Decoupled Natural Orthogonal Compliment 
(DeNOC), where the key steps are pointed out for 
the purpose of robot selection. Section 3 shows the 
derivation of the GIM and MCI and computes the 
complexity in terms of floating point operations. 
Section 4 illustrates the robot selection 
methodology with the help of planar and spatial 3- 
link robots. Finally, conclusions are given in 
Section 5.  

2 DYNAMIC MODELING USING 
THE DENOC 

2.1 Kinematic Formulation 

For an n-degree of freedom open-loop serial-robot, 
as shown in Fig. I ,  the n-dimensional joint rate 
vcctor, 6 ,  is defined as . .  e =[e, ,..., e,lT ...( I )  
where O , ,  for i = 1 ,.. .,n, is the joint displacement of 
the i“’ joint. Accordingly, Qi , is the joint rate. The 
twist and wrench vectors of the i“’ link, ti and wi, 
are then introduced as - -  

B o b  i 

I ,  2, ..., n : Joints; # I ,  #2, ... #n : Links 
Fig. 1: An n-link manipulator 

where ai and vi are the 3-dimensional vectors of 
angular velocity and the linear velocity of the 
origin point 0,, of the it” body where it is coupled 
with its previous body in the chain, i.e., the (i-I)” 
body, respectively. Moreover, ni and fi are the 3- 
dimensional vectors denoting the resultant moment 
about 0,, and the resultant forces acting at 0,, 

respectively (Saha and Schiehlen, 2001). The 6n- 
dimensional vectors of generalized twist, t, and the 
generalized wrench. w. are defined next as 

+ Inertial 
“xk,,. 1,- :me 

rig. L. A L U U ~ I W  b y a i ~ i i i  UI LIIICC U U U I G ~  

T T  t = p,T, t: )..., t,T IT; w = [WIT, W*T )..., w,, 1 
...( 3) 

From the kinematic constraints between the two 
successive link$ say, #j and #i of Fig. 2, the twist, 
ti, can be expressed in terms of the twist of the 
previous body, ti, and the joint rate, e , ,  i.e., 

ti = t, + pi e, . . .(4) 

where the 6 x 6 matrix, Aij and the 6-dimensional 
vector, pi, are given by 

1 
Aij -[- ,, a.. X I  

pi  [ for prismatic joint 

-[:I for revolute joint; 

. . . ( 5 )  

ei being the unit vector parallel to the axis of 
rotation (for revolute joint) or the direction of 
translation (for prismatic joint) oftlie i”’ joint. 111 eq. 
(S), (aij x 1) is the 3x3 cross-product tensor 
associated with the vector aij, as indicated in  Fig. 2, 
which when operates on the 3-dimensional 
Cartesian vector x results in a cross-product vector, 
i.e., (aijxl)x = aIjxx. The 3x3 matrix, I ,  is the 
identity matrix, whereas 0 and 0 are the 3x3 matrix 
and the 3-din~ensional vector of zeros, rcspectively. 
Henceforth, the size of 1, 0, and 0 will be 
understood as those compatible with the matrix size 
where they appear. Equation (4) is now written for, 
i = I ,  2 ,..., n, and put i n  a compact form as 

T being the 6nxn Natural Orthogonal Complement 
(NOC) matrix (Angeles and Lee, 1988), whereas 
the 6nx6n and 6nxn matrices, TI and Td, 
respectively, are the Decouplcd NOC (DeNOC) 
matrices (Saha, 1999). The structures of the 
DeNOC matrices, TI and Tdr are shown below: 

t = T 6, where T = TI Td ...( 6) 
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r 1  0 01 

... * .  1 I 
1 [PI 0 ... 0 

1 0  0 ... P"] 
where Aii and pi, for i, j = 1 ,..., n, are defined in eq. 
(5). The concept of the DeNOC is useful for the 
development of efficient recursive dynamics 
algorithms. both inverse and forward dynamics, as 
shown in Saha (1999. 2003). and Saha and 
Schiehlen (2001). 
2.2 Dynamic Modeling 
For the systeni under study, as shown in Fig. 1. if 
m, is the mass of the i'" link and Ii dcnotes the 3x3 
inertia tensor of the i'" link about its origin point, 
O,, then the tincoupled Newton-Euler equations 
(NE) goveming the motion of the Pi' link can be 
written as 

where the 6 x 6 matrix, Mi and Wi for the i"' link 
are given as (Saha and Schiehlen, 2001 ) 

midi x 1 

M, ti + W i M i E i t i  = w i  ... (Xi 

li 
M i %  [ 

-midi x l  m i l  

i n  which I i  = 1; - dix(midixl) -- It being the 3x3 
inertia tensor about the mass centre of-the ill '  body, 
C,, d i x l  and oixl  are the 3x3 cross-product tensors 
associated with the vector di shown iii Fig. 2, and 
the angular velocity, mi, respectively. The wrench 
vector, \vi, is already defined in eq. ( 2 ) .  Equation 
(9) is written for all the n links, i.e.. i = I ,  2 ,..., n. 
and cxpressed in compact form as 
M t + WMEt = w . . . ( I  0) 
where M Is  the Onx6n generalized mass matrix, W 
is the 6nx6n generalized matrix of tlie angul& 
velocities, w is the 611-dimensional generalized 
vector of wrench, and t is the hn-dimensional 
generalized vector of twist. Vectors t and w are 
defined i n  eq. (3) .  whereas the mati:ices, RI and W, 
are defined as follows: 
NI = diag. [ MI,  ..., NI,,]; W = diag. [ )VI, .... W,J; 
E =- diag. [ El, ..., E,]. 
Premultiplying cq. ( I O )  with the transpose of the 
NOC matrix, i.e., TT. one gets ti independent 
dynamic equations of motion of the coupled 
systeni, namely. 

...( I I )  
where \v is substituted by \v = tv" + \vC. wE and wc 
hcing tlic Gn-dimensional vectors of external and 
constraint wrenches, respectively. The term T"w" 

T I  (M i+\VMEt)=TT (w" + w " )  

in eq. ( I  1) vanishes. a s  tlie constraint wrcnch 
produces no work. Substiitition of the expression of 
T = TITd from cq. (6) and its time derivative. 
T = T,Td +TIT,, into eq. ( 1  I ) ,  results i n  the 
following form of the dynamic equations of 
motion: 

which is nothing but the Euler-Lagrange equations 
ofmotion (Angeles and Lee, 1988).1n eq. (12). 
I T~;MT,~ : the n x 11 generalizcd inertia matrix: 

C =T;(T;"MT, + ,Gw +- M)T,, : the nxn matrix of 

convective inertia (MCI) terms; 
t T:G': the n-diinensional vcctor of 
generalized forces due to driving forces I torques 
and those resulting front the gravity and 
dissipation. 

The 611 x 6 n  matrices, M . s g  and the hn-dimensional 

vector G E  are given by 

fi e T;'MTI ; i\i = T;''WMETI ;and 6' 
Using the expressions for TI and T,, fiom eq.(7), the 
elements of the n x ti matrices 1. C and, the n- 
dimensional vector, T. as appear after eq.( I2), i.e., 
i,. cij and si, respectively are written analytically as 
(Saha, 1999), 

ii, E p : ' ~  i ~ i j p j  

c , j ~ p ' ( ~ ~ ~ ~ ~ ~ ~ + i \ : ~ ~ , , ~ t ? ~ , , . ~ +  A K M ~ ) ~ , ~  

tG+cb=r ...( 12) 

- 

1 

- 
T T W E  

- 
- 

I 

... if i l j  
. -  - c(i E pi T -  (M i A . . W .  + H .. + 1\;1 i A  ij)pj 

!I J U 
,,.otherwise 

si +%, . . .( 13) 

where the matrix, Hij , in the expression of c~,, i s  

given as iiii E R;iiAij + A : * ~ , ~ H ~ + ~ , ~ A ~ ~ ,  in which Aij 

is the time derivative of the 6x6 matrix, Aii, dcliiied 
in eq. ( 5 ) .  Moreover, tlie 6-dimcnsional vcctor wi  
is given by 
% r i  = w i  + A ~ ~ i + l ~ i + l , w I ~ e r e ~ l ,  =w, ,  ...( 14) 

In eq. (1  3). the 6 x 6 matrix, ;, has the following 
features which plays an important role in deciding 
many of the dynamic characteristics of the robot 
including the simplification of tlic GIM and MCI: 
1 ) Matrix M can be recursively computed as 

M i  E M i  + AYil . iMiblAi+l , i  fori =ti, n-I. ._.. 1 

where M ,  = M,, since there is no (1i+1)" link. i.e., 

hl = 0. Moreover. kIbl + ~ l , _ , h ~ l A , , n - l .  

2 )  Matrix M i  has the physical interpretation, i.e., it 
represents the mass matrix of the "composite 
body", i .  formed by rigidly joining the bodies, 
i ,..., n, as indicated i n  Fig. 1 .  

- 

- 
?., - 

- 
N 
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GIM 
Type Computation 

R R P  46M, 29A 

RPII 34M, 22A 

3) The elements of hi and the GIM or MCI can be 
made vanish or constant with suitable choice of the 
link masses and geometries. For example, if any 
two joints are prismatic which are orthogonal and 
intersecting, the corresponding inertia element, i,, 
can be proven to be zero. 
For the planar case, the above complexity can be 
further simplified by eliminating where zero 
components of a vector or a matrix. The 
computational costs are for an n-link n-revolute 
joint planar robot 
GIM: (3.5n’+ 11.5n-7)M(2n2+9n-7)A ....( 15a) 
MCI: (7n2+ 13n+4)M(4 / i2+  13/z+2)A. ...( l5b) 
Furthermore, if there are prismatic joint the 
computational costs for both spatial and planar 
cases further reduces which is very obvious from 
the expressions given in eq. (13). Now the selection 

Tot~l  MCI 
Computation 

76M, 42A 

88M; 39A 

122M; 7 I A 

122M: 6 I A 

4 

Fig. 3: A 3-link 2R-1P (PRR) planar manipulator 

3 PROPOSED ROBOT SELECTION 

METHODOLOGY 

I n  this section, proposed robot selection 
methodology based on the DeNOC based dynamics 
presented in Section 2 is illustrated with the help of 
M i n k  3-degree of freedom (DOF) planar and 
spatial robot arms. Based on the dynamic model 
given by eqs. (12) and (13), computational 
complexities for the GIM and MCl of an n-link, n- 
revolute joint serial robot can be computed as 
(Bhangale, 2003) 
GIM: ( I  1n2+34ti - I8)M(7n2+37n - 18)A ....( 16a) 
MCI: (14/i2+22i1 +4)M(I3.5/z2+55.5/7-65.5)A. 

...( l6b) 
where ‘M’ and ‘A’ stand for niultiplications / 
divisions and additions / subtractions, respectively. 
Note that the GIM complexity is less than the value 
reported by Walker and Orin (1  982); i.e., (1  2rr’ + 
5611 - 27)M (7n’ + 67ri - 53)A, whereas for MCl 
complexity value is not available for comparison. 

3.1 Selection of a Planar 3-DOF Robot 
A robot performing a planar task requires 3-DOF, 
two for positions and one for orientation. One can 
have choices of a robot with the following joint 
combinations: (a) three revolute, 3R; (b) two 

revolute one prismatic, 2R-IP; and (c) two 
prismatic one revolute, 2P-IR. I n  case of choice 
(a), there is no change in the kinematic 
configuration when the joints are interchanged. i.e., 
no change in computational counts, i.e., for 11 = 3 in 
eq. (15), 59M 38A for GIM and l06M 77A for the 
MCI, are required. In choices (b) and (c), however, 
one can have the following choices: RRP, RPR, 
PRR (Fig. 3) for (b), and PPR, PRP, RPP for (c). 
Using the proposed methodology onc can select a 
suitable 2R-1 P or 2P-1 R architecture based on the 
simplicity of the GIM and MCI. Here, 2R-I P, i.e., 
two revolute and one prismatic joint combination is 
taken for illustration purposes. The computational 
complexity of the GIM, and MCI terms for RRP, 
RPR, PRR are evaluated, from eq. (15) which are 
tabulated in Table I .  Note that the simplifications 
due to the orthogonality of the prismatic joint with 
the other revolute joints are taken into account. 
Differences in the results are djie to the placements 
of the prismatic joint at the location I ,  2 or 3. 

M: Multiplication / Division; A: Addition / Subtraction. 
- (Underline): Minimum Values. 

Based on the results in  Table I .  PRR, as shown in  
Fig. 3(c), has minimum complexity. which would 
provide higher speed in control and simulation. 
3.2 Spatial 3-DOF Robot Arm 
Three-DOF spatial robot arms with two revolute 
and one prismatic joint are shown in Fig. 4 (a)-(c). 
Two of which, namely, those in Fig. 4(a) and (c) 
are the Stanford and RTX robot arms, respectively. 
While the Stanford arm has spherical workspace, 
RTX is of SCARA type. In order to considcr a case 
where the prismatic joint is at location 2, a third 
type is conceived here. Computational coniplexities 
for the Generalized Inertia Matrix (GIM) and 
Matrix of Convective Inertia (MCI) terms for all 
these robot arms are tabulated i n  Table 2, which are 
based on eq. (16). Similar to the planar case, 
simplicity due to the orthogonal positions of the 
joint axes is also taken into account. Based on the 
total minimum computational complexity PRR 
configuration (RTX Robot), shown in  Fig. 4(c) is 
selected. 
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'rypc 

RI< I' 
(Stanford) 

i m  

dynamics algorithms required for robot motion 
control. 

CilM MCI 'l'otal 
Comput:i~itrn Computation 

170M; 1 5 4 4  52214; 352A 602hl: jOh/l 

.- 
153Al: 14M 55h:lI: 4 l5/1 709AI: Sh3.,1 

I'R I< 
(RI 'X)  

142A.k 13SA 389h.l:317/l 531AI:JjS 

4 CONCLUSIONS 
Robot selection based 011 the computational 
complexities of the Generalized Inertia Matrix 
(GIM), and Matrix of Convective Inertia (MCI) 
terms, I and C of eq. (13), respectively, arising 
from the dynamic equations of motion of the 
manipulator at hand, is used to select robot 
architecture. The concept is illustrated with the help 
of 3-link 3-DOF planar and spatial robots with two 
revolute and one prismatic joint. I n  the planar casc 
PRR configuration, and in the spatial case PRR 
configuration (RTX Robot), as shown in  Figs. 3 
and 4(c), respectively, provided the most ccononiic 
computational counts. Hence, i t  is anticipated that 
tlicsc robots will provide fast control and 
simulation algorithms. This has been verified 
through the CPU time requirement of the inverse 
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