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Abstract - Robot selection for an application is
generally done based on experience, intuition and
at most using the kinematic considerations like
workspace, manipulability, etc. Dynamics is
ignored at this stage even though it is widely used
for robot control and simulation purposes. This
paper uses dynamic characteristics of a robot,
namely, the computational simplicity ~ of the
matrices associated with its dynamic equations of
motion, i.e., the Generalized Inertia Matrix, (GIM)
and the Matrix of Convective Inertia (MCI) terms.
Simplification of these matrices occurs -due to
specific values of the robot parameters like link
masses and lengths, joint sequences, etc. Hence,
- these parameters can be used as design variables to
make some elements of the GIM and MCI vanish
or constant. Explicit expressions of the GIM and
MCI elements are available due to the use of the
concept of the Decoupled Natural Orthogonal
Compliment  (DeNOC) matrices, introduced
elsewhere, in deriving the dynamic equations of
motion of the robots under study. Selection of robot
parameters based on GIM and MCI simplification
eases both the control and simulation tasks of the
chosen robot, hence, will improve its speed,
precision and stability.

Keywords: Robot, Selection, DeNOC, GIM, MCI,
Computational Complexity.

1 INTRODUCTION

A robot is characterized by its degree of freedom,
number of joints, type of joints, joint placement,
link lengths and shapes, and their orientation which
influence its performances, namely, the workspace,
manipulability, ease and speed of operation, etc.
The speed of operation significantly depends on the
complexities of the kinematic and dynamic
equations and their computations. Hence, in order
to select a suitable robot, both aspects of kinematics
and dynamics should be looked into. Generally,
kinematic characteristics like workspace, etc. are
considered for the selection of a robot in an
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application. Dynamics is neglected even though
they are widely used for control and simulation of
robots. In this paper, simplicity of dynamic model
and its computations are emphasized, particularly,
with respect to the Generalized Inertia Matrix
(GIM) and the Matrix of Convective Inertia (MCI)
terms arising from the dynamic equations of
motion. The simplicity of the matrices is
emphasized here because for example, if the GIM
is diagonal then the robot control is decoupled, i.c.,
each actuator can be controlled independently that
will improve overall robot performances (speed and
precision). Besides, the simulation in which, the
inversion of the GIM is required becomes straight
forward, as for a diagonal matrix its inversion is
just another diagonal matrix whose diagonal
elements are the reciprocals of the original matrix.

Earlier work on robot selection is based on the
workspace and payload capacity, for example,
those reported in Rivin (1988), Dorf and Nof
(1988), and others. Another measure is the ease of
changing the position and orientation of the end-
effector, i.e., manipulability (Yoshikawa, 1998).
All these concepts are kinematic ones, where the
arm dynamics, i.e., mass and inertia of the links,
are ignored. In this paper, one aspect of dynamics
(Bhangale et al., 2001), namely, the simplicity of
the Generalized Inertia Matrix (GIM) and the
Matrix of Convective Inertia (MCIl) terms
associated with the dynamic equations of motion of
a robot is used.

To derive the dynamic equations of motion of-a
robot manipulator, one of the two fundamental
approaches, i.e., Newton-Euler (NE) (Fu et al,
1987) or Euler-Lagrange (EL) (Meirovitch, 1970)
is used. In this paper, the dynamic model is
developed using the NE equations and the concept
of the Decoupled Natural Orthogonal Compliment
(DeNOC) (Saha, 1999). The DeNOC concept
allows one to write the elements of the GIM and
MCI in explicit analytical forms. These forms led


mailto:prasad-bhangale@rediffniail.com

Poster Papers /1545

to the development of recursive dynamics
algorithms for both the inverse and forward
dynamics of serial (Saha, 1999; 2003), and parallel
(Saha and Schiehlen, 2001) robotic systems.
Besides, the explicit expressions can be used to
simplify the GIM and MCI, which is explored in
this paper for robot selection.

This paper is organized as follows: Section 2
outlines the dynamic modeling using the
Decoupled  Natural Orthogonal Compliment
(DeNOC), where the key steps are pointed out for
the purpose of robot selection. Section 3 shows the
derivation of the GIM and MCI and computes the
complexity in terms of floating point operations.
Section 4  illustrates the robot selection
methodology with the help of planar and spatial 3-
link robots. Finally, conclusions are given in
Section 5.

2 DYNAMIC MODELING USING
THE DENOC

2.1 Kinematic Formulation

For an n-degree of freedom open-loop serial-robot,
as shown in Fig.1, the n-dimensional joint rate
vector, 8, is defined as

8=(0,,...,6,]1" (D)
where 8, for i = 1,...,n, is the joint displacement of
the i joint. Accordingly, Gi , is the joint rate. The

twist and wrench vectors of the i link, t; and w;,
are then introduced as

o, n,
t, = and W, = ...(2)
[v,} [fi:|

Base

1,2, ...,n:Joints; #1, #2, ...#n: Links
Fig. 1: An n-link manipulator

where ®; and v; are the 3-dimensional vectors of
angular velocity and the linear velocity of the
origin point O;, of the i body where it is coupled
with its previous body in the chain, i.e., the (i-1)"
body, respectively. Moreover, n; and f; are the 3-
dimensional vectors denoting the resultant moment
about O, and the resultant forces acting at O,

respectively (Saha and Schichlen, 2001). The 6n-
dimensional vectors of generalized twist, t, and the
generalized wrench. w. are defined next as

#i

Inertial
o
7 Frame

L1, 4. A CUOUPICU SYSLCIH V1 LHLICC DOULICS

t T

[tlT, tZT"'~7 tnT lTv w = [W|T> WZTV'-s WIIT]

.(3)
From the kinematic constraints between the two
successive links, say, #j and #i of Fig. 2, the twist,
t;, can be expressed in terms of the twist of the

* previous body, t;, and the joint rate, Gi ,l.e.,

t] = Aij tj + pi 9i - (4)
where the 6 x 6 matrix, A; and the 6-dimensional
vector, p;, are given by

A. = 1 o .o =|% | for revolute joint;

i = H . .
—a;x1 1 0

p, = [:)} for prismatic joint ..(5)

¢; being the unit vector parallel to the axis of
rotation (for revolute joint) or the direction of
translation (for prismatic joint) of the i joint. In eq.
(5), (a3 x 1) is the 3x3 cross-product tensor
associated with the vector ay, as indicated in Fig. 2,
which when operates on the 3-dimensional
Cartesian vector x results in a cross-product vector,
ie, (ayx1)x = ayxx. The 3x3 matrix, 1, is the
identity matrix, whereas O and 0 are the 3x3 matrix
and the 3-dimensional vector of zeros, respectively.

Henceforth, the size of 1, O, and 0 will be

understood as those compatible with the matrix size
where they appear. Equation (4) is now written for,
i=1,2,...,n, and put in a compact form as
t=T9, whereT=T, T,y ...(0)
T being the 6nxn Natural Orthogonal Complement
(NOC) matrix (Angeles and Lee, 1988), whereas
the 6nx6n and 6nxn matrices, T, and Ty,
respectively, are the Decoupled NOC (DeNOC)
matrices (Saha, 1999). The structures of the
DeNOC matrices, Ty and T, are shown below:
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1 0 0
T|= AZI 1
An.l An-l 2 l
P, 0 0
and Ta= 0 p'; 0 ' A7)
0 0 ... p,

where Aj; and p;, fori, j = 1,...,n, are defined in eq.
(5). The concept of the DeNOC is useful for the
_development of efficient recursive dynamics
algorithms, both inverse and forward dynamics, as
shown in Saha (1999, 2003), and Saha and
Schiehlen (2001).

2.2 Dynamic Modeling

For the system under study, as shown in Fig. 1, if
ny; is the mass of the i link and I; denotes the 3x3
inertia tensor of the i link about its origin point,
O;, then the uncoupled Newton-Euler equations
(NE) governing the motion of the i link can be
written as .

M, t; +WMEL =w,; .(8) .
where the 6 x 6 matrix, M; and W; for the i" link
are given as (Saha and Schiehlen, 2001)

I; m;d; x1
M= _mdx1 mg |

o x1 O
| . 1 O
wF[ o mixl]‘Eiz[o O] . (9)

in which I; = I - dix(mid;x1) -- I being the 3x3
inertia tensor about the mass centre of the i body.
Ci, dix1 and @;x1 arc the 3x3 cross-product tensors
associated with the vector d; shown in Fig. 2, and
the angular velocity, o;, respectively. The wrench
vector, w;, is already defined in eq. (2). Equation
(9) is written for all the n links, i.e., i =1, 2,..., n,
and expressed in compact form as
Mt+WMEt=w ...(10)
where M is the 6nx6n generalized mass matrix, W
is the 6nx6n generalized matrix of the angulér
velocities, w is the 6n-dimensional generalized
vector of wrench, and t is the 6n-dimensional
generalized vector of twist. Vectors t and w are
defined in eq. (3), whereas the matrices, M and W,
are defined as follows:

M =diag. [ My, ..., M J: W =diag. [ Wy, ... Wi
E =diag. [ E,, ..., E,].

Premultiplying cq. (10) with the transpose of the
NOC matrix, i.e., T, one gets n independent
dynamic equations of motion of the coupled
system, namely,

TN (Mt+WME) =TT (w* +w) (D
where w is substituted by w = w" + w®, w* and w©
being the On-dimensional vectors of external and
constraint wrenches, respectively. The term TTw®

S W, =w, + AW

in eq. (1) vanishes, as the constraint wrench
produces no work. Substitution of the expression of
T = T, Ty from cq. (6) and its time derivative,
T=T7T, +T,T,. into eq. (1), results in the
following form of the dynamic equations of
motion:

16+CO=n1 ..(12)
which is nothing but the Euler-Lagrange equations
of motion (Angeles and Lee, 1988).In eq. (12),

1= T('."{Vl"rd : the n x n generalized inertia matrix;

C=T/(T}'MT, + MW + l\ﬁ;l)’]“| : the nxn matrix of
convective inertia (MCI) terms;
T =T/wF: the

n-dimensional vector of

generalized forces duc to driving forces / torques
and those resulting from the gravity and
dissipation.

The 6n x 6n matrices, M.M and the 6n-dimensional
vector W are given by ]

~ = ~E T E
M =T'MT;M =T WMET,;and W =T, w
Using the expressions for Ty and Ty from eq.(7), the
clements of the n x n matrices I, C and, the n-
dimensional vector, T. as appear after eq.(12), i.e.,
iy, ¢;j and T, respectively are written analytically as
(Saha, 1999),

. TS .

j =pj MjAyp;

cij=p; (AJM, W, + A}, H

i

T e
i+ AEMP;
Lif i)

= n TN\ H N
ci=Pi (MjAuW;+Hy+ M;A;)p;
...otherwise
u = p'irwl --(13)
where the matrix, ﬁij , in the expression of ¢y, is

given as Flii = MiAij + A.i‘.ljﬁnuA%j’ in which A.]
is the time derivative of the 6x6 matrix, Ay, defined
in eq. (5). Moreover, the 6-dimensional vector Wi
is given by

where W, =w, ...(14)

In eq. (13). the 6 x 6 matrix, M, has the following

features which plays an important role in deciding
many of the dynamic characteristics of the robot
including the simplification of the GIM and MCl:

[RES I P2

1) Matrix M ; can be recursively computed as

Mi =M, +AT M. A

I FORY. W fori=n,n-1, ..., 1

where 1\71" = M, since there is no (n+1)" link, i.e.,
Iv' n+l = O Moreover, I\/'n»l EMH +‘l¥:.‘u~ll\1nAnm—l'

2) Matrix M, has the physical interpretation, i.c., it
represents the mass matrix of the “composite
body”, i, formed by rigidly joining the bodies,
i,....n, as indicated in Fig. 1.
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3) The elements of lV[i and the GIM or MCI can be

made vanish or constant with suitable choice of the
link masses and geometries. For example, if any
two joints are prismatic which are orthogonal and
- intersecting, the corresponding inertia element, ij
can be proven to be zero. :
For the planar case, the above complexity can be
further simplified by eliminating where zero
components of a vector or a matrix. The
computational costs are for an n-link n-revolute
joint planar robot
GIM: (3.50° + 11.5n — 7)M (2n” + 9~ 7)4....(15a)
MCL: (70 + 130 + 4)M (40’ + 130 + 2 )A. ...(15b)
Furthermore, if there are prismatic joint the
computational costs for both spatial and planar
cases further reduces which is very obvious from
the expressions given in eq. (13). Now the selection

Y

v

Fig. 3: A 3-link 2R-1P (PRR) planar manipulator

3 PROPOSED ROBOT SELECTIONV
METHODOLOGY

In this section, proposed robot selection
methodology based on the DeNOC based dynamics
presented in Section 2 is illustrated with the help of
3-link 3-degree of freedom (DOF) planar and
spatial robot arms. Based on the dynamic model
given by egs. (12) and (13), computational
complexities for the GIM and MCI of an n-link, n-
revolute joint serial robot can be computed as
(Bhangale, 2003)
GIM: (112° + 34n - 18)M (71 + 370 - 18)4....(16a)
MCL: (1417 +22n + 4)M (13.51° + 55.5n — 65.5)A.
...(16b)
where ‘M’ and ‘A’ stand for muitiplications /
divisions and additions / subtractions, respectively.
Note that the GIM complexity is less than the value
reported by Walker and Orin (1982), i.e., (124° +
56n — 27)M (7’ + 67n — 53)A, whereas for MCI
complexity value is not available for comparison.
3.1 Selection of a Planar 3-DOF Robot
A robot performing a planar task requires 3-DOF,
two for positions and one for orientation. One can
have choices of a robot with the following joint
combinations: (a) three revolute, 3R; (b) two

revolute one prismatic, 2R-1P; and (¢) two
prismatic one revolute, 2P-1R. In case of choice
(a), there is no change in the kinematic
configuration when the joints are interchanged, i.e.,
no change in computational counts, i.e., forn =13 in
eq. (15), S9M 384 for GIM and 106M 774 for the
MCI, are required. In choices (b) and (c), however,
one can have the following choices: RRP, RPR,
PRR (Fig. 3) for (b), and PPR, PRP, RPP for (c).
Using the proposed methodology onc can select a
suitable 2R-1P or 2P-1R architecture based on the
simplicity of the GIM and MCI. Here, 2R-IP, i.e.,
two revolute and one prismatic joint combination is
taken for illustration purposes. The computational
complexity of the GIM, and MCI terms for RRP,
RPR, PRR are evaluated, from eq. (15) which are
tabulated in Table |. Note that the simplifications
due to the orthogonality of the prismatic joint with
the other revolute joints are taken into account.
Differences in the results are due to the placements
of the prismatic joint at the location 1, 2 or 3.

Table 1: Computation Complexities of 2R-1P

robots
Type Computaton | Computtion Toul
RRP | 46M; 294 76M, 424 122M; 7114
RPR | 34M; 224 88M; 394 122M: 614
PRR 42M; 274 S53M; 294 95M; 564

M: Multiplication / Division; A: Addition / Subtraction.
___ (Underline): Minimum Values.

Based on the results in Table 1, PRR, as shown in
Fig. 3(c), has minimum complexity, which would
provide higher speed in control and simulation.

3.2 Spatial 3-DOF Robot Arm

Three-DOF spatial robot arms with two revolute
and one prismatic joint are shown in Fig. 4 (a)-(c).
Two of which, namely, those in Fig. 4(a) and (c)
are the Stanford and RTX robot arms, respectively.
While the Stanford arm has spherical workspace,
RTX is of SCARA type. In order to consider a case
where the prismatic joint is at location 2,.a third
type is conceived here. Computational complexities
for the Generalized Inertia Matrix (GIM) and
Matrix of Convective Inertia (MCI) terms for all
these robot arms are tabulated in Table 2, which are
based on eq. (16). Similar to the planar case,
simplicity due to the orthogonal positions of the
joint axes is also taken into account. Based on the
total minimum computational complexity PRR
configuration (RTX Robot), shown in Fig. 4(c) is
selected.
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Fig. 4: The 3-link 2P-1R spélial rhunipulators

Table 2: Computational Complexities of
spatial 2R-1P robots

Type GIM MClH Total
Computation Computation
RRP 170M; 1544 522M; 3524 692M: 5064
(Stanford) )
RPR 153A1; 1484 5564154 TO9AL 56341
PRR 142M; 1384 A89M: 3174 S31AML; 4554
(RTX)

M: Multiplication/Division; A: Addition/Subtraction.
___{Underline): Minimum Values.

4 CONCLUSIONS

Robot selection based on the computational
complexities of the Generalized Inertia’™ Matrix
(GIM), and Matrix of Convective Inertia (MCI)
terms, 1 and C of eq. (13), respectively, arising
from the dynamic equations of mwotion of the
manipulator at hand, is used to select robot
architecture. The concept is illustrated with the help
of 3-link 3-DOF planar and spatial robots with two
revolute and one prismatic joint. In the planar case
PRR configuration, and in the spatial case PRR
configuration (RTX Robot), as shown in Figs. 3
and 4(c), respectively, provided the most economic
computational counts. Hence, it is anticipated that
these robots  will provide fast control and
simulation algorithms. This has been verified
through the CPU time requirement of the inverse

dynamics algorithms required for robot motion
control.
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