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It is well known that mass-metric tensor determinants @gt(nfluence the equilibrium statistics

and the rates of conformational transitions for polymers with constrained bond lengths and bond
angles. It is now standard practice to include a Fixman-style compensating potential of the form
U.(qs) = (—kgT/2)In[detGs) | as part of algorithms for torsional space molecular dynamics. This
elegant strategy helps eliminate unwarranted biases that arise due to the imposition of holonomic
constraints. However, the precise nature and extent of variation ddJetfid hence IfdetGs) |

with chain conformation and chain length has never been quantified. This type of analysis is crucial
for understanding the nature of the conformational bias that the introduction of a Fixman potential
aims to eliminate. Additionally, a detailed analysis of the conformational dependence®{)detl|

help resolve ambiguities regarding suggestions for incorporating terms related &)det(the
design of move sets in torsional space Monte Carlo simulations. In this work, we present results
from a systematic study of the variation of d&fj for a serial polymer with fixed bond lengths and
bond angles as a function of chain conformation and chain length. This analysis requires an
algorithm designed for rapid computation of d&ff which simultaneously allows for a physical/
geometric interpretation of the conformational dependence oGdetConsequently, we provide a
detailed discussion of our adaptation of@(n) algorithm from the robotics literature, which leads

to simple recursion relations for direct evaluation of @g)( Our analysis of the conformational
dependence of de¥() yields the following insights.(1) detG,) is maximized for spatial
conformers and minimized for planar conformatio{®.Previous work suggests that it is logical to
expect that the conformational dependence of@gtpecomes more pronounced with increase in
chain length. Confirming this expectation, we provide systematic quantification of the nature of this
dependency and show that the difference in @gt(between spatial and planar conformers, i.e.,
between the maxima and minima of d&ff grows systematically with chain length. Finally, we
provide a brief discussion of implications of our analysis for the design of move sets in Monte Carlo
simulations. ©2004 American Institute of Physic§DOI: 10.1063/1.1821492

I. INTRODUCTION molecular dynamics simulations in a mean-field solvent and
polymers modeled using holonomic constraints. The latter
Polymeric systems exhibit diverse phenomena that spaallows us to eliminate high frequency modes, which leads to
a wide range length and time scafésExamples include the use of larger time steps and access to slower motions
biopolymers such as proteifsand synthetic polymers in sampled on realistic time scales. This is a reasonable ap-
both melts and in solutioh?*In principle, one can conceive proach if the time scales for simulated motions are well sepa-
of modeling the diverse length and time scales that rangeated from the time scales of motions that are igndréd.
over orders of magnitude using simulations based on detailedowever, macromolecular binding reactions are known to
Hamiltonians to probe all motions in a statistically meaning-involve small and intermediate-scale chain motions that are
ful fashion®® However, such an approach is not just hope-likely to be linked to solvation and desolvation
lessly expensive but is also unlikely to be informative if oneprocesse$'™**In order to study such processes it is neces-
is interested in a specific window of length and timesary to probe the coupling between local chain flexibility,
scales"” For the latter it suffices to implement simulation averaged solvent degrees of freedom, and large-scale mo-
methods and potential functions designed to probe a Speciﬁ(ipns of associating proteins and their substrates. This is re-
realm of interest:” alizable using hybrid method$'*® where Monte Carlo
The most straightforward approach would be to carry ouimulations®*” with “nonphysical” moves designed to
probe the effect of intramolecular conformational flexibility
) _ are in.co.rpora}ted i'ntp Brownign dynamics simulatforu$
Author to'Whom correspondence should be addressed. Electronic ma'b.SSOCIatIOI’l-dISSOCIatlon reactions of either small molecule
pappu@biomed.wustl.edu . ) _ . .
bAuthor to whom correspondence should be addressed. Electronic mailld@nds and proteins or pairs of macromolecules. The idea is
gregc@jhu.edu to carry out Monte Carlo simulations on specific substruc-
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tures wherein the degrees of freedom are individual torsiofing potential continue to be mattealthough some algo-
angles or sets of torsion angles. Issues that arise in torsiondthms continue to ignore compensating potentials
space molecular dynamics and hybrid torsional space Montaltogethef? However, for overdamped dynamics and state-
Carlo simulationg®-2° are best analyzed using model sys-to-state transition probabilities in torsional space Monte
tems such as a serial chain of point masses. Carlo simulations, prescriptions regarding the use of com-
A serial chaif! of point masses connected by bonds ofpensating potentials related to deff remain ambig-
fixed length and fixed bond angles is a reasonable model farous**~*¢ Theodorou and co-workéfshave shown that ra-
simulating the equilibrium properties of isolated polymertios of mass-metric tensor determinants must be included in
chains or independent substructures within larger macromothe acceptance ratios for move sets that are based on con-
ecules. The relevant degrees of freedom in such a system agerted motions, i.e., for moves that vary collections of tor-
the so-called soft internal degrees or torsion angles. Thision angles between fixed ends of a chain. Hoffman and
system has been of long standing interest in the polymeknapp have adopted similar strategies in their “window
literature®>?® For a chain with 6+ 1)-point masses con- move Monte Carlo” simulation If the goal is to design
nected byn bond lengthsn—1 bond angles, and—2 tor-  move sets for torsional space Monte Carlo simulations with-
sion angles there aren3- 3 internal degrees of freedom, and out loop closure, the question is as follows: Is it necessary to
six remaining degrees of freedom for rigid body motion of include terms related to the mass-metric tensor determinant
the chain. When bond lengths and bond angles are frozedetG,)? Unfortunately, the literature offers ambiguous ad-
there are onlyn+4 degrees of freedom correspondingnto  vice for solving this important probler®*°lt is difficult to
—2 torsions and six degrees of freedom for rigid body mo-resolve these ambiguities withoaipriori knowledge regard-
tion. ing the conformational dependence of &) and a direct
For a HamiltonianH (p,q), written as a sum of kinetic comparison of thermodynamic averages between two types
K(p) and potentialJ(q) energy terms, wherg denotes gen- of simulations, viz., torsional space molecular dynamics
eralized coordinates arpithe generalized momenta, the par- simulations that include the Fixman potential and variants of
tition function in ann-V-T ensemble, following integration tgrsional space Monte Carlo simulations.
over the all generalized momenta, @=CJ exp(-U(q)/ In order to understand the nature of the biases imposed
keT)defG(q)]"*dq. Here, G(q) refers to a (8+3)X(3n  py constraints in molecular dynamics simulations without the
+3) mass-metric tensor the,()th element of which is of  Fixman potential and to decide on the correct course of ac-
the form gy, = ={"gmy(ar; /aqy) - (dr;/dq,) - r; denotes Car- tion for Monte Carlo simulations it is essential that we un-
tesian coordinates of individual mass pointsin a space-  derstand the magnitude and the nature of the conformational
fixed reference framekg is the Boltzmann constant, afids dependence of de¥,) for a serial chain with frozen bond
the temperature. Conversely, for a chain with fixed bondengths and bond anglé8This is our objective in the current
lengths and bond angles, the partition function, writtenpaper. We focus on answering two important questions,
in terms of the unconstrained “soft” generalized coordi- namely:(1) What is the nature of the conformational depen-
nates gs, i.e., the torsions alone, takes the for@  gence of dets,), i.e., what type of conformers maximize
=J exd—U(as)/ksT]Vde{Gs(qs) Jda, where Gs is a (0 det(G,) and what type of conformers minimize det)? (2)
+4)X(n+4) reduced mass-metric tensor for the manifold\yhat is the magnitude of variation in[betGs)] between
defined by rigid bond lengths and bond angles. As is wellgnformers that maximize d&() and those that minimize
known?*~?5the reduced mass-metric ten€®y is clearly not detG.)?
the same as the full mass-metric ten§orFurthermore, un- In order to answer the questions raised above we need a
like _deT(G), which is typi(?ally indept_andent of the values of 1 athod for computing de®y). The algorithm should permit
Qs i-e., chain conformation, de) is gxpecttzesd gg depend 5 comprehensive analysis of the structureSgfand a physi-
nonlinearly on the values of the coordinatgs™" cal interpretation tailor made to address the questions raised
above. An important upshot of our current study is the re-
finement of arO(n) algorithm proposed by Safi&>!which
Several researchers have studied the effect of constrainis an algorithm for the inverted inertia matrix of serial robot
on the equilibrium statistics and rates of conformational tranarms, for computing de®;). The refined algorithm will
sitions in molecular dynamics simulations for chains withhave practical use in future work on Monte Carlo simula-
frozen bond lengths and frozen bond andfe$:*8Primarily  tions.
because momenta conjugate to unconstrained degrees of In order to provide a rationale for our adaptation of Sa-
freedom are set to zefd,constraining bond lengths and ha’s algorithnt! we briefly review methods drawn from both
bond angles lead to artificial coupling between the unconthe polymer and robotics literatures for computing @gj(
strained flexible degrees of freedom and introducesind quantities related ©B5. This is followed by a derivation
biase$?2439252&hat must be removed by adding a compen-of an exact recursion relation for dét{) for a serial chain
sating potential U, of the form U.(gs)«—kgT/  with constrained bond lengths and bond angles. In the results
2In[det@G;) ] (Refs. 25 and 2)7to the original potential func- section we analyze the nature and magnitude ofGigtfor
tion U(qgs). Incorporation of compensating potentials into different chain conformers and varying numbers of torsional
torsional space molecular dynamics is now standardlegrees of freedonOur work represents the first systematic
practicé’*84%and important algorithmic improvements for analysis of the variation ofletG,) with chain conforma-
the calculation of correction forces related to the compensational and chain length. The main finding is thdetGs) is

A. Implication of det (G;) for molecular simulations
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maximized for spatial conformations and minimized for pla-  Spatial operator algebra clearly leads to a class of effi-
nar conformationsWe conclude with a brief discussion on cient algorithms for molecular dynamics in internal coordi-
the implication of our findings for the design of torsional nate space. However, the use of this approach does not serve
space Monte Carlo simulations in polymeric systems. our twofold purpose of first, carrying out a direct analysis of
the behavior of de,) as a function of chain length and
second, obtaining a physical interpretation regarding the na-
B. Algorithms for computing det  (G) ture of the conformational dependence of this quantity. Al-
ternatively, Saha has proposed an approach based on appli-

Calculation of det(Gg)—Fixmaris method The most i o i imination to el s of th
popular approach in the polymer literature relies on the astation of Laussian elimination to elements of theé mass-

: 0,51 : o
tute observations made by FixnfaR’ regarding the relation- Metc tensof’*" Saha has shown that in addition to

ship between the determinant of the full mass-metric tensof'©SEMNVING the recursive schemgs necessanofar) a_Igo—
de(G), which is easily calculate®, and the determinant of rithms, the method of mass-metric tensor decomposition also

the reduced mass-metric tensor, @g)( Fixman showed provides a clear physical/geometric interpretation, which al-
that, detG,)=detG)detH). The éleménts oH, viz., hy, lows us to understand the magnitude and nature of the bias
) S. . ) "

=M L(Umy) (aqtifar,) - (agtar,), whereg! and ! refer imposed by the presence of the term @gj(in the equilib-

to the constrained generalized coordinates or hard modes, apgm partition function for a chain with constraints. Hence,

easier to compute, when compared to the elementS.of we adapt S_aha’s algoritrﬁh_to the problem of ir_1terest, viz.,
For the case of fixed bond lengths and flexible bond artdles f[he calculation, and gnaly5|s of déy) as a_functlt_)n of vary-

is a tridiagonal matrix and déf) can be obtained using a ing numbers of torsional angles for serial chains with con-
simple recursion relation. For rigid bond lengths and bonostramed bond lengths and bond angles.

angles, the matrixd has band limit five, and although det)

cannot be obtained using the same recursion relation as in

Fixman’s papef> appropriate strategies for matrix decompo- Il. DERIVATION OF THE RECURSION RELATIONSHIP

sition may still ensure a®(n) algorithm. However, since TO CALCULATE det (Gs)

calculation of deiH) relies on prior knowledge of individual The polymer modelFig. 1 shows the geometry of the

elements of theH matrix, generalization of Fixman’'s ap- . .
proach to chains with arbitrary constraints or long chainsmOOIeI system witin +1 point massedabeled 0, 1, 2...5)

with frozen bonds is unlikely to be an efficient procé$s. connected byn—1 bond angleglabeled 1, 2....n—1) and
Calculation of det(G)—methods from the robotics lit- n—_2 torsu_)n angle_e{lfabeled 1, 2,...n=2). For an isolated
erature In the field of robotics, mass-metric tensors and theirSerlal gham with r.'g'd bond lengths and bond angles, the
inverse play an integral part of algorithms for forward andgener.allzgd coordmgteqS:(a,a,,B,y, $1:-bn-2) are a
inverse dynamics?~>* Within the robotics literature, there combination of torsion angles.,...¢n-2), and rigid-

are two categories of algorithms to compute the mass-metri%Ody motions(a,a,3,y). Let Ry{ ., y) be arotation ma-

tensor determinant and associated gradighiis the first ap- glxr;ve%?i:)anrg‘%ge;fj:beutsrzzgtrarlfsulgona;\ﬁ}?/[eegorl?or tc?ifxlice-
proach, elements of the mass-metric tensor are determineé?ent of thé olvmer chain from the inertial frame inpthree-
individually®>®¢ and the required determinants are calculated" poly

. . . dimensional Cartesian spadig. 1). The equilibrium bond
using techniques such as Cholesky decomposifibribe lengths are labeled as,fo?igelg ; bond gngles aré. for
complexity of which grows a®(n?).5>%¢In the second ap- 21 n—1 and the torsion anales a, for =1
proach, algorithms based on recursion relations reduce tHg_l ,Ii.er:‘erehce frameB. are attac%e d 1o ekach po;n ’r};;ss
computational complexity t®(n). izd n such that we gl]et the following

One of the best-know®(n) algorithms is based on the (1) The axis3. is alond bondi: i—l' -5 is alon
so-called spatial operator factorization technique developegond 1 ! 9 1= Zo 9
by a group of researchers at the Jet Propulsion @) .The axisy, is such thatm,, m,, andm, are con-
Laboratory’®>8-%1These algorithms rely on a fundamental tained in the Ianoﬁ 03 then % - ;’2 2
analogy between the dynamics of multibody robots and the 3 F, is pparzloel Zv.i/}th fra'moe;z(') thg. transformation

recursive equations of Kallman filterif’§.Two distinct fac- ; . .
q g from Fg to F, is represented by a translation along the axis

torizations are realized, namely, one for the mass-metric tens~ .
Zo With L.

h f he i f th - i . .
sor and_the second for the inverse of the mass-metriC (4) The transformation fronfr; to F, is composed from

tensor’®%® both of which are similar to covariance . ; 2 3
factorization§? which produce highly efficienO(n) algo- a rofation with the angle)laaround axisx, followed by a
translation along the rotated with L.

rithms both for the calculation of mass-metric tensor deter- ) .

. . o . (5) The transformation fronF;_; to F; is composed
minants and for forward and inverse dynamics in serial ro-from a rotation with magnitudeb; _, arounds,_, followed
botic systems and polymeric systeris?*"*> As an by a rotation withé, a?ound trllélnevv?- f&léwed then
illustration of the latter, Jain has implemented a recursiveDy . =1 Sl

. . y a translation with_; along the newg; (Fig. 1).
algorithm based on spatial operator algebra that does not . .
Let xo=[0 0 O] denote the relative position of masy,

;_eh?g'r?neiﬁggcnaf/c;?apbl:;ats: O;rtt hgf rr:ss;;\ﬂrgetggft\tsﬁor. in the frame of reference attached to the base of the chain—
X P Fo, andro=a be its absolute positior{Fig. 1). Likewise,

package® is especially well suited to tree-topology and se-
rial macromolecules with hard constrairit$? x1=[0 0 L], r;=R,{a,B,y)X+a, (1)
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FIG. 1. Polymer model: Cartoon for the macroscopically serial chain mitlh mass pointsp-massless links-1 bond angles, and-2 torsions. The base
of the chain, mass-poimh, is freely floating with respect to the inertial axes.

ro=r1+ Ry a,B,7)rot(6,)[0 0 L,]" (2)  tive to the proximal end frame is a function of the torsions
alone. Hence, the position of tlig point mass in the system
with with respect to inertial space will be
[ cosa —sina 0] ri=R,fa,B,v)X+a. (5)
Rot(a)=| sina cosa 0}, Kinetic energy in terms of the generalized velocitie
0 0 1] first recast the mass matrix in a form that will allow us to
) i compute the determinant using &{n) algorithm. The ki-
1 0 0 netic energy of the system is
Rot(a)=|0 cosa —sina|, Lo
|0 sina  cosa | KZEE mirr; . (6)
i=0
Note that due to the serial nature of the chain, the Cartesian i ) L
coordinates foi=3,..n, Position vectors of the point masses in the inertial frame take
the form
ri=ri_1+LiR, fa,B,7) ~ .
I 1 I ZXZ( ﬁ 7 ri:ri,l+LiRie3, |:3,n, (7)

XRi_1(P1,eesi2:01,-.0 )Ui(di-1,6,-1),  (3) -
where Ri=R,,{«,8,y)R; is the rotation matrix from the
whereR; _ is a rotation matrix that describes the orientationjnertial frame to the frame in the chain and can be ex-
of framei — 1 with respect to the base frame. This matrix canpressed as
be computed by concatenating local changes in orientationas A
0 . - . Ri=R_R " Y¢i_1,6,_1), i=2,.n. (8
Ri-1=R1(0,0R5(0,61) " "Ri“1(i—2,6i-2), 1=2,..n
(4)  The velocity of theith point mass is then:
RE, 1 (b, 0 ) =Rot(p)RoL(6), k=1,.n—1. o .
~ ri:ri_1+LiRie3, |:3,n (9)
The vectom; is unitary, pointing in the direction of boridas
seen in reference framie- 1 attached to the intersection of The same quantity expressed in ftie reference frame be-
bondsi—1 andi-0;=R! *(¢;_1,6,_1)&; &=[001]". comes
We use the rigid-body transformatidiR,,{«,3,v),a] ~ o~ ~
i it ientati R'Fi=R/ri_1+LR'R
to describe the position and orientation of a frame of refer- iH=Rili-1T LRy Ri€s,
ence attached to the proximal end of the chain relative to the _- . (10
inertial frame. The position of any point on the polymer rela-  Vi=R0t(6-1)TRot(¢i 1) "R 1f; - — Skew&L ) e,
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wherew; is the angular velocity of the frameelative to the

inertial frame, but expressed in framend Skeww) is the
skew symmetric matrix associate witht®®

@ =R ¢ 1,6 1) w_1+ROt (B 1) &1,

Patriciu, Chirikjian, and Pappu

Vi=RI 1,6, 1)V 4
—L;Skew&;)R| M i—1.,0i_1) T4
—L;Skew@;)Rot (6 1) &1, 1=3,...0.

(12
In compact notation, Eq$10) and(11) can be written as

i=3,.n. (12)
@i :Biifl @i-1 +pi¢i*ll |:3,n, (13)
Substitutinge; from Eq.(11) into Eq.(10), v; ande; will be Vi ‘ Vi1
expressed as functions @f_; and w;_; and ¢;_,. There-
fore whereB; ;_; andp; are given by
5 _[ Rot (6, 1) "Rot(¢; 1)" O3x3
M| - Skew(Li&g)Rot(6;-1) TRot(i-1)T Rob(6-1)TRot(¢ 1))’
(14
_ Rot(6;_1) &
Pi7| —skewLi&y)Rot (6 1) &/
|
For the first three mass points, we have where
— T:
Vo=Ry A @, B,7) 4, (15 sinBsiny sinBsiny 0
. a Jr=| sinBcosy —siny O
Vl:RZXZ(a’Bl’y)Ta_LlskeV\(e3)‘]R B 1 (16) Cosﬁ 0 1
LY
@ | t notati
: n compact notation
,=Rot(6;) @ =Rot(6;)Jr B, 17 P
Y
Vo a
V=1 Rot(61)"Ryuf a,B,7)"a—[LiRot(6;) 'Skew(&) Vi =P, Z , (19)
7]
) A y
@
+L,Skew@&)Rot(61)1Ig| B [ (18
v where
szz(av,BJ’)T O3x3
Roda,B,)" —L,Skew(&5)Jg
P,= - (20
Osx3 Rot(61) ' Jr

ROtX( 01)TRZXZ(a!:8! 7)T

—[L,Rot(#;)"Skew(&3) + L ,Skew &) Rot( 6;) T]Jg

Downloaded 23 Dec 2004 to 128.252.66.3. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 24, 22 December 2004 Serial polymers with constraints 12713

The expression for the kinetic energy can be written in ahe velocities of joints for serial robotic manipulatéfSaha

more concise form using spatial vectd?s, . used a decoupled form of the NOC matrix for the velocity
Fo vector of serial robotic manipulators with fixed bdédn
r adapting Saha algorithm, we have generalized it to apply
10 1 t_oz for a chain of point masses connected by inextensible mass-
K= 5;0 mif?h=§[f3 M1 wy fy o) Ty M| T2 |, less bonds, with the base of the chain freely floatiigre
w3 r v " .
rs 0 [ a’
. v .
: 1 a
- - wz -B
Vo | =N{Ng| = 23
M=M,&M,EMza- &M, @D ol ] 29
v ¢1
3 .

i — Mol3x303x3 i i i
with Ml—[03X3 mllaxs]'M is constructed using a matrix

direct sum(®) The matricedN; andNy are of the form
|Osx3 Osxs } =21 -1 0 0 O
T 0s Milsns)’ e 6x6 Ysxe Usxe 6% 6
Osx6 lexs Osxe “** Osxe
which is simply a block matrix constructed from a set of N1= Osx6 Bs2 lexe " Osxe ,
square matriceM;, i=1,...n. : : : : :
Using Eqs.(13) and_ (_19) the kinetic energy is rewritten [ Osx6 Bnz Bus * lowel goven
as a function of velocities expressed in frames attached to
individual mass points as (24)
N
o Ro  0O3x3 Osx3 Osxs Osxz Osxs FPyizce) Oizxi On o Oppep T
0
I;l O3x3 Ri O3xz O3xz Osxg Osxz Osx6 P3(6x1) Ogx1 Osx1
@7 O3x3 Osx3 13xz O3xz Osxz Osxz — Osxcs Osx1  Paex1) **°  Osx1
r2|=| Osx3 O3xz O3xz Rz 0Osxz Ozx3 : : : : :
w
f: O3z O3xz O3x3z Oszxz laxz Osxs | Osxs Opx1 Osx1  *** Pniex1)l b (n+.4)
O O3x3 O3xz Osxz O3xz O3xz Ry
N The kinetic energy now becomes
I VO | - a -
Vi o
@2 1 . : B
— _ral ;| - . ™TNT
X| Va |. (22 K= 2[3 a B v ¢1 - INGN;MN Ny Y (25
w3 .
Vg d?l
o From Eg.(25) the generalized mass metric tensor is
We rewrite the combined velocity vector in compact — G,=NJNJMN;Ng. (26)

form using the so-called natural orthogonal component _
(NOC) matrix introduced originally by Angeles and [%¢o0 ~ The matrix P, can be further decomposed 4% ,
relate angular and translational velocities of rigid bodies to= P1(12X4)A1(4X6) where

Lsxs O3x3

~ 13><3 _Ske\/\(éng)

Py = T , (27)
O3x3 Rot(6,)

Rot(6;)" —[Rot(6;)"Skew&L 1)+ Skew(&sLz)Rot(61)']
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main ideas behind the reverse Gaussian elimination proce-
: (28 dure proposed by Satfaare summarized in the Appendix.
Physical/geometric interpretation of scalar quantities
A } A Following Sahd, we interpret each scalan,, (k=3,...n)
d

A_ [ RZXZ(a1B17)T 03><3
03><3 ‘]R

06><6

as the rotational inertia of the distal end of the chain that
emanates from mass-poim, as measured about the axis of
rotation parallel to théth bond. Each of the scalars is cal-

Nd:&ld

Osxs Lin-2)x(n-2)]

p Oy -~ 0
112X0) . . culated using the formula
B Osx6 Psex1) °° Osxa . .
=l L | 9 M= (PO1xo(Wiex1, Pivot at thekth step.  (33)
Osx6 Osx1  **° Pneex1) Premultiplication of the matri>és by an EUTM leads to a

new matrix and the introduction of a column with zeros

above the diagonal. For tHeh step if we denote the result-

de(Gg) =sir? 8 del Gy), (300 ant matrix asGY’, the pivot element at thkth step corre-
sponds to the diagonal element of the column above which

Finally, the desired determinant dét{) is written as

where all elements are zero. Fd«zS,...n\ifk in Eqg. (33 is ob-
Gs=NINIMN;Ny. tained using recursion relations of the form,
Each 6<6 block along the diagonal of thené& 6n matrix Wy =Mpy,

NIMN1 in Eq. (30) may be interpreted as the extended mass

~ . A s
of a composite chain consisting of mass points.,n con- Mi=My+ By 1 (M 1= Wi 1 Wit 1) Bir 1k

nected by massless inextensible bonds. Jr
Calculation ofdetGs) using Sahs algorithm Eq. (30) \Ilk:A—k, (34)
reduces the problem of interest to a calculation of @gt( M
This is accomplished using a(n) algorithm developed by Osxs  Osya
Saha!’ For the symmetric, positive-definite mati a re- k=[0 . k=3,.n,
3x3  Milaxs

verse Gaussian elimination is recursively appltéé® until
we get to the block defined by the mati. This leads to |\}|n: M,.

the decomposmorG UDUT whereD is a (n+4)X(n

+4) diagonal matrix and) is a unit upper triangular matrix The 6x6 matrixQ, is defined as

such that dét))=1 and detG,)=det). Here Q1=PI{M,®[M,+ B;,z(l\hsﬂr W, W1)B,,}P;. (35
[Q: 0 0 0 07 The determinant of); can be evaluated analytically or nu-
my 0 0 O merically and the desired determinant of the reduced mass-
B i, 0 0 31) metric tensor is
n
0 . .
. de(Gy)=sir* Bde( Q[ ] (36)
L mp, =3
Ay ~ Ill. ANALYSIS OF det (G5) AS A FUNCTION
de(GS)_de(Ql)ill M - 32 OF INCREASING NUMBERS OF TORSION ANGLES
In the reverse Gaussian eliminatfoprocedure the ma- We now proceed to analyze the nature and magnitude of

trix Gg is reduced to a lower triangular form via successivethe conformational dependence of @&jY for serial chains
premultiplication of the original matrix by a series of so- of different lengths in different conformations. In the follow-
called elementary upper triangular matrid€JTMs). This  ing discussion all references to détf in actuality refer to

is to be contrasted with the conventional Gau55|ardet(GS) which is directly related to de®) as shown in Eq.
eliminatiorr™*® procedure, which reduces the original matrix (30). We calculate deG) using the recursion relations in
to an upper triangular form via successive premultiplicationggs.(32), (33), (34), and(35). We focus our attention on the
of the original matrix, by a series of so-called elementarynature of two types of conformations, viz., those that maxi-
lower triangular matriceELTMs). Reverse Gaussian elimi- mize detG,), and those that minimize this quantity. In gen-
nation is applied to take advantage of the fact that for theeral, we find that spatial conformers have larger values for
serial chain, elements of the decoupled form of the NOCdet(G,) when compared to planar conformers. In all of our
matrice$® are written in terms oB;;_; andp; ,**and the calculations, all bond lengths were set to be 1 A, masses
elements of both these matrices depend only on the orientagvere set to unity, and all bond angles were fixed at 109°. The
tions of local frames of reference. The concatenation of locafact that planar conformations minimize detj is valid re-
frames leads to simplified recursion relations for the elegardless of the value of bond angle. In what followsgje-
ments of the final upper triangular matrix and 1@¢n) al-  notes the number of mass points angdenotes the number
gorithm for the evaluation of the determinant Gk. The  of torsions.
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Analysis of the conformational variation of dét) for
n=4 and 5: We first evaluate the dependence ofG@igton
the torsion angles by calculating this determinant for all pos-
sible conformations for chains with=4 andn=>5. Figure 2
shows the variation of deg;) as a function of¢ for n=4.
Our results are in agreement with results reported in the
literature®®° A contour plot of detG,) as a function of tor-
sion anglesp; and ¢, is shown in Fig. 3 for the chain with
n=>5. Forn=4, detG,) is minimal for values of$~0° and
¢~+180° whereas deg) is maximal for p=~=*+90°. Simi-
larly for n=5, detG) is minimized for ($4,¢,)~0° and
(¢1,9o)~*180° whereas deH;) is maximal for
(p1,¢2)~*=90°. Settingp;~0° or ¢;~180° fori=1 or 2
and ¢;=~=*90° for j=1 or 2 leads to local extrema, as
shown in Fig. 3.

Extrema of dei,) for longer chains: Ideally, one would
like to enumerate all possible conformations, cOMPUtEFIG. 3. Contour plot of de,) for a chain with five mass-points,, = 2.
detG,) for each conformer, and analyze the resultant hyperThe two axes show the two torsion angk¢s and ¢, .
surface. However, exhaustive enumeration is not feasible be-
cause of rapid growth in the number of conceivable conform-
ers. Therefore’ we S|mp||fy the analysis by restricting ourare both regular and random-coil-like. The ratio of the num-
attention to conformers generated by combinations of twd¥er of random coif to the number of regular conformations
torsion angle values, Vizg,~+90° and ¢;~180° or 0°. is roughly similar in both sets since the values of the torsion
For chains of lengtm with n, torsion angles, we generated angle, which minimize the metric tensor determinant, are
2"s conformations. The procedure we use is as follows: for &~+180°, whereas those that maximize it are-90°. Fig-
chain withn,+1 torsion angles, we start with each of the Ures 4-7 show the extreme conformations within each set
2" conformers that minimize or maximize dét) for a  {Min} and{Max; for a chain withn,=8. Note that the con-
chain with n, torsion angles, and use a Hooke-Jeevedormations shown in Figs. 4 and 7 are not all self-avoiding.
optimizatiorf® scheme to calculate the determinant for ex-Although planar sheets/strands are not conformers that glo-
tremal conformations chains extended by one bond. Thi®ally minimize the value of de®;), they are the only rep-
procedure yields conformers that can be clustered into twéesentative conformations from the gédin} that are both
distinct sets, viz., the set of conformers, referred tohaax}, well ordered and free of steric clashes. Similar arguments
which corresponds to combinations of torsion angles thafold for spatial helices that maximize the value of Gg(
maximize detG,) and a second set of conformers, referred ~ Behavior of detGg) as a function oh,,: Analyzing the
to as{Min}, which is generated by combinations ¢fangles ~ range of de,) values within and between the sidin}
that minimize detG,). For a chain witm , angles, there are and {Max} provides a sense of how de) varies across
2"s local minima in the sefMin} and 2'¢ local maxima in ~ contiguous regions in multidimensional space. We have
the set{Max}. quantified the influence of the number of torsiangson the

Nature of conformers that minimize/maximize daf(:  value of detG) for the type of extrema shown in Figs. 4—7.

The two setgMin} and {Max} comprise conformations that In the analysis that follows, for a chain of lengi}, we use
the notations described below.

(1) G;: Is the value of detg,) for the conformer that
9— " . . . . . corresponds to the global minimum.
: : : : : : : (2) G,: Is the maximum value of de®,) in the set
{Min}.
(3) Gj3: Is the smallest possible value of datj for
conformers in the s€iMax}.

150 <100 <50 0 50 100 150

¢
FIG. 4. Self-intersectinglanar conformatiore {Min} with n,=8 for which
FIG. 2. Plot of detG;) vs ¢ for a chain with four mass points,,=1. the determinant de®) is a global minimum.
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FIG. 7. Self-intersecting spatial conformefMax} with n,=8 for which
the determinant de®) is a global maximum.

gests that the change in d&t{ is quite drastic for transitions
between spatial and planar conformers.

Decomposing the contributions to détj: From Eq.
(32), it follows that the determinant d&() is a product of
two components.

(1) In the first termII{_;m; eachm; denotes the rota-
tional inertia of the distal end of the chain that emanates
from mass-pointm; as measured about the axis of rotation
parallel to theith bond. The product is the mass-metric ten-

FIG. 5. Regular, sterically realizable planar conformati¢htin} with n, ~ SOF determinant for a chain with its proximal end fixed in
=8 for which the determinant de() is a local minimum. space.

(2) The second term de&d(;) represents the effect of the
floating base on the mass-metric tensor determinant. The
term detQQ,) reflects the coupling between the rigid body
coordinates(spatial degrees of freedgnand chain confor-

within {Min} or {Max}: In Fig. 8 we show a plot of the ratio mation (internal coordinatgs This coupling enters the ex-

G,/G, as a function of chain length. This quantity assesse®'€Ssion forQ, through the termal’; andM;. detQ,), is a
the degree of variation in d€() values for conformers Measure of the conformation-dependent translational and

within the set{Min}. Variations between the extrema within Criéntational entropy of the chain. o
the set{Min} are small. More importantly, in molecular In order to estimate the relative contribution of the two

simulations we would be interested in quantities related tFomMPonentslli_;m; and detQ,) to the value of det;) we
In[detG,)], and from Fig. 8 it is clear that for regions of Compute the ratid-= \detQ,)/II{_sm; as a function oh 4
conformation space corresponding to those in the{\gét} for conformations '_[hat constitute the upper and Iovyer bounds
the degree of variation in [detGg)] is negligible. Similar N the two sets{Min} and {Maxj. Results so obtained are
conclusions result from an analysis of the ratioGf/Gs as shown in Fig. 10. The rati& exh|b|t§ different behavior for
a function of chain length for conformers that belong to the€Xtrema drawn from the two sefdlin} and {Max}, respec-
set{Max. tively. WhereasF dgqreases as, increases for conformers
Variation of detG,) for transitions between conformers from the set{Min} it increases for conformer; from the set
that are in different sets, viz{Min! and {Max}: We now {Min}. Upon comparison of the results from Figs. 8 and 9 to
proceed to analyze the behavior of @& for conformers those in Fig. 10, we find that the evolution of the ratio
drawn from the two different sets, namefiylin} and{Max}.
In Fig. 9, we show a plot of the ratio lgg G3/G,) as a
function of n,. Clearly, the minimal value of de®) over
all conformations that belong to the dax}, G5 remains
well separated from the maximum value of @&f( over all
conformations that belong to the s@flin}, G,. This sug-

(4) G,: Isthe value of defG,) for the global maximum.
Variation of det(ss) for transitions between conformers

10 20 30 40 50 60 70 80 90 100
n
¢
FIG. 8. Variation of the ratidG, /G, as a function ofh,. G, andG, are
defined in the text. This ratio indicates that the extent of variation oGdet(
and especially of lfdetG,)] with n, is negligible for conformers drawn

FIG. 6. Regular, sterically realizabipatial conformatiore {Max} with n,, from the set{Min}. Similar results are obtained for the raf, /G as a
=8 for which the determinant d&() is a local maximum. function ofn,, .
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FIG. 9. Variation of the ratid, /G, as a function oh, . This ratio quan- 1
tifies the variation in de€,) for transitions between spatial and planar 05
conformers. In this case, the variation of the ratio of @g(or the ratio of
In[det(GS)] is not neg|igib|e_ 0 20 40 60 80 100 120 20 40 61(‘) 80 100 120

S — I W H ot N N 0 0

FIG. 10. Plots ofF = \/det@Q,)/II{_;m/, the ratio of spatial versus confor-
) ) ) ) mational contributions to deg), as a function o, . (a) For the upper
G,/G; (and G,/G3) as a function ofn, is mainly influ-  bound in the sefMaxi; (b) for the lower bound in the s¢Max}; () for the

enced by the behavior of dao Conversely, the pI’OdUCt upper bound in the sgMin}; and(d) for the lower bound in the séMin}.

I ,m; is the main factor in the evolution of the ratio

l00,0(G4/G3). Furthermore, deJ,) decreases with increas- of chain length. This result is illustrated by Fig. 11, which
ing n, whereas]I_;m; continues to increase as a function plots the variation of

In(q,/q,)=In Vde( Q,) for lower bound ifMax}/de{ Q,) for upper bound ifMin}

and Ingry /my)=In(IT"_, M for lower bound ikMax}/  botics literature®>* A complete derivation of thi©(n) al-
I ;m; for upper bound ifMin}) as a function ofn,. gorithm has been provided in Sec. Il. In Sec. Ill, we carried
Our results support the following conclusion: the variation inout a systematic analysis of the conformational dependence
the behavior of deGg) for conformational transitions be- of detGs). Our conclusions are as follows$l) detGs) is
tween the setéMin} and{Max} does not lie in inertial quan- maximized for spatial conformers and minimized for planar
tities associated with degy) or In[det@Q;)], which quanti- conformations(2) The difference in de) between spatial
fies the translational and orientational entropy of the chainand planar conformers is significant and, as one would logi-
Instead, the differences are mainly due to contributions frontally expect’ this difference increases with increasing chain
inertial quantities associated with internal coordinates, i.e.length.(3) The proposed algorithm for calculating datj is
by terms related to the conformational entropy of the chainunique and novel in that it allows us to decompose the dis-
tinct contributions made by spatial variables or translational
plus orientational entropydet(@;)] and internal coordinates
(T1_5m;) or conformational entropy to de¥(). The extent

We have carried out a systematic analysis of the naturef coupling between the two quantities is such that the domi-
and magnitude of the conformational dependence ofajpt(  nant contributions to the variation of déi) with conforma-
This topic has been an issue of intense scrutiny and debate fipn do not come from the coupling between conformational
the polymer literaturd—30-32-3426.3536.23nq has spurred the and translational plus orientational quantities. Instead, the
development of elegant proposals for computing@gt@nd main source of conformational heterogeneity of Ggj(
associated quantitids>?"-385However, a systematic analy- arises from quantities that depend on the torsion angles
sis of the conformational dependence of @j(is missing.  alone. We have been able to arrive at all of these conclusions
To some extent, this reflects the continued belief that combecause of the algorithm used to compute @gt( a full
puting detG,) is challenging®*°a belief that is endorsed by derivation of which has been provided in Sec. II.
the lack of this analysis in any of the original algorithmic Implications for torsional space Monte Carlo simula-
papers>>38 tions: As noted in Sec. | A, ambiguous suggestions have been

In order to carry out the proposed analysis we havemade regarding the role of d&) in torsional space Monte
adapted and refined a novel algorithm developed in the ro€arlo simulations. Consider the following situation: suppose

IV. SUMMARY
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(a) which corresponds to using the form of the integrand of the
0 " " ' " ; - torsional space partition realized upon integration over all
nonzero momentésee Sec. | A Allen and Tildesle$ recom-
mend the use of optioftb) which corresponds to the incor-
poration of a Fixman potential to remove an ostensible bias.
Finally, almost all torsional space Monte Carlo simulations
choose option(c), i.e., the terms involving deg;) are ig-
nored, i.e. Ag=1.444°

What is the correct form foAg? In torsional space mo-
lecular dynamics simulations, conformations are sampled
from a probability density of the form: p(qg)

o« \defGq(gs) ] exd —BU(gs) 1. As is well known, analysis

of equilibrium statistics and rates of conformational transi-
300 30 30 40 320 60 70 tions obtained from molecular dynamics simulations with
some holonomic constraints indicates the presence of biases
proportional to ydet(G), especially when compared to
simulations based on the use of stiff restraints. These biases
can be eliminated by incorporating a Fixman style compen-
sation potential as discussed in Sec. | A. This is necessary in
order to maintain congruence with statistics for systems
where the constraints are replaced by stiff restraints. If the
goal is to obtain similar congruence between torsional space
Monte Carlo simulations and molecular dynamics simula-
tions with stiff restraints, what is the correct choice for the
form of Ag?

Based on our analysis, we conclude the following: if the
proposed transition is from one conformation in 8din} to
another in the sefMin} or equivalently from one conforma-

. . . . tion in the se{Max} to another in the seiMax}, then for a
00 20 40 60 80 100 120 prescribed chain length, as shown in Fig. 8, the changes in
" detG;) are negligible. Consequently, all three optidias—
(c) outlined above will yield equivalent statistics. However,
such small-scale conformational transitions are never guar-

FIG. 11. Variation of

In(qy /) =In \/de{Q,) for lower bound infMax} anteed in torsional space where one sees large-scale lever
12 det(Qy) for upper bound ifMin} arm effects for small changes in torsion andiese., most
as a function of,,; (b) variation of Inn, /my) as a function of,, . changes of torsion angles are likely to lead to transitions

between planar and spatial conformers or vice versa.
Based on de,) values obtained using the algorithm

a proposed move to change torsion angles takes the chajiesented in this work, we have tried to resolve the issue of
from conformation i to j. In order to ensure detailed balancechoosing between the three different suggestions for the
we require thatpe(i) a(i—j)acdi—j) = peq(j) @(j—iacdj  functional form of acceptance ratios. We accomplished this
—1) where peq(i) and peq(j) are the equilibrium weights by comparing the statistics from torsional space Monte Carlo
associated with conformations i and j, respectivelfi;—j) is ~ simulations to those obtained using molecular dynamics
the probability of making a transition between conformers isimulations with stiff bond lengths and bond angles. We will
and j, which we shall mandate is symmetric, i.e(j—j)  present the details of our calculations elsewhere. Here we
=a(j—i). Finally, ac¢i—j) denotes the probability of ac- present the main conclusions from our analysis. We conclude
cepting a trial move from i to j. The likelihood of accepting that the correct form for the acceptance ratio is opfion
a conformational transition—j is dictated by the ratioA i.e., Ac=1. One need worry about the biases due to mass-
=acdi—j)/acdj—i). The standard literature on molecular metric tensor determinants only in torsional space molecular
simulations provides three drastically different suggestionglynamics simulations where the momenta conjugate to the
for the form of A. These are as follows:(a@ A  soft modes are explicity computed and specific momenta
= de{Gy(j) "2 exp(- BU))/defG4(i) ]*?exp(-BU;), (b) A  conjugate to the frozen bond lengths and bond angles are
= de{Gy(i) "2exp(~ BU;))/defG(j) ]*?exp(-BU;), or (c)  explicitly set to zero. The Fixman potential in molecular dy-
A=exp{—B[U;—U]}. The acceptance ratios may be written namics simulations eliminates biases by accounting for the
in concise form as A=acg(i—jlacg(i—j)acg(j loss in entropy associated with the freezing momenta conju-
—i)acg(j—i) =AgAg, whereAg denotes the contribution gate to constrained coordinates. Upon elimination of the
from detG,) or In[detGs) ] andAg denotes the contribution bias, we restore the Hamiltonian to one wherein the thermal
from relative Boltzmann weights. At issue, is the correctand excess parts are separable. This is the starting point for
form for Ag . Frenkel and Sniitsuggest the use of optida) the design of Monte Carlo simulations. In this limit, there is
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no a priori justification for the assumption of preexisting E---E, G.=L. The latter is a consequence of the particular
biases as is done in opug(b) or for imposing blqsgs related torm  for és shown in Eq. (30). Alternatively,

to vqume.eIeme_ntg as is dope in opu(x_su). ThIS.I.S espe- é‘s: E—’l_“El—ll::L"Jl: where E_,1~--E,_1I:ELAJ=1n,Xn,
cially true if one is interested in generating equilibrium sta—+— )CT et X" The di ”I | & .
tistics that are concordant with those obtained from simula= " *n’ @ . The diagona ee_”.‘e“ts ' are unity .
tions of systems wherein the constraints are replaced by stif'ﬁlnd consequ_erjtly the symme_tnc, pq5|t|yg-gef|n|te Iqwer bl
restraints. Hence, we propose that optigh is the correct anglflar r,nafme may be rewritten ag =DU’, whereD is
option for the acceptance ratio in Monte Carlo simulations® N’ >N’ diagonal matrix whose elements are the diagonal
without loop closure move&:730Our conclusions are in line €lements ofL. The matrixGs is now decomposed a8
with the results of Perchakt al’* who found that mass- =UDU'. Since the determinant of a unit upper triangular
metric tensor biases diminish as a function of increased fricmatrix is unity, the required determinant detf is reduced
tion in Brownian dynamics simulations and in the over-to the determinant of the diagonal matrix @t

damped limit, where the momentum autocorrelation function

decreases rapldly, the biases introduced due to artifacts OJfA. Yu. Grosberg and A. R. Khokhlo\&tatistical Physics of Macromol-
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