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It is well known that mass-metric tensor determinants det(Gs) influence the equilibrium statistics
and the rates of conformational transitions for polymers with constrained bond lengths and bond
angles. It is now standard practice to include a Fixman-style compensating potential of the form
Uc(qs)}(2kBT/2)ln@det(Gs)# as part of algorithms for torsional space molecular dynamics. This
elegant strategy helps eliminate unwarranted biases that arise due to the imposition of holonomic
constraints. However, the precise nature and extent of variation of det(Gs) and hence ln@det(Gs)#
with chain conformation and chain length has never been quantified. This type of analysis is crucial
for understanding the nature of the conformational bias that the introduction of a Fixman potential
aims to eliminate. Additionally, a detailed analysis of the conformational dependence of det(Gs) will
help resolve ambiguities regarding suggestions for incorporating terms related to det(Gs) in the
design of move sets in torsional space Monte Carlo simulations. In this work, we present results
from a systematic study of the variation of det(Gs) for a serial polymer with fixed bond lengths and
bond angles as a function of chain conformation and chain length. This analysis requires an
algorithm designed for rapid computation of det(Gs) which simultaneously allows for a physical/
geometric interpretation of the conformational dependence of det(Gs). Consequently, we provide a
detailed discussion of our adaptation of anO(n) algorithm from the robotics literature, which leads
to simple recursion relations for direct evaluation of det(Gs). Our analysis of the conformational
dependence of det(Gs) yields the following insights.~1! det(Gs) is maximized for spatial
conformers and minimized for planar conformations.~2! Previous work suggests that it is logical to
expect that the conformational dependence of det(Gs) becomes more pronounced with increase in
chain length. Confirming this expectation, we provide systematic quantification of the nature of this
dependency and show that the difference in det(Gs) between spatial and planar conformers, i.e.,
between the maxima and minima of det(Gs) grows systematically with chain length. Finally, we
provide a brief discussion of implications of our analysis for the design of move sets in Monte Carlo
simulations. ©2004 American Institute of Physics.@DOI: 10.1063/1.1821492#

I. INTRODUCTION

Polymeric systems exhibit diverse phenomena that span
a wide range length and time scales.1,2 Examples include
biopolymers such as proteins,3 and synthetic polymers in
both melts and in solution.1,2,4 In principle, one can conceive
of modeling the diverse length and time scales that range
over orders of magnitude using simulations based on detailed
Hamiltonians to probe all motions in a statistically meaning-
ful fashion.5,6 However, such an approach is not just hope-
lessly expensive but is also unlikely to be informative if one
is interested in a specific window of length and time
scales.4,7 For the latter it suffices to implement simulation
methods and potential functions designed to probe a specific
realm of interest.4,7

The most straightforward approach would be to carry out

molecular dynamics simulations in a mean-field solvent and
polymers modeled using holonomic constraints. The latter
allows us to eliminate high frequency modes, which leads to
the use of larger time steps and access to slower motions
sampled on realistic time scales. This is a reasonable ap-
proach if the time scales for simulated motions are well sepa-
rated from the time scales of motions that are ignored.8–10

However, macromolecular binding reactions are known to
involve small and intermediate-scale chain motions that are
likely to be linked to solvation and desolvation
processes.11–13 In order to study such processes it is neces-
sary to probe the coupling between local chain flexibility,
averaged solvent degrees of freedom, and large-scale mo-
tions of associating proteins and their substrates. This is re-
alizable using hybrid methods5,7,14,15 where Monte Carlo
simulations16,17 with ‘‘nonphysical’’ moves5 designed to
probe the effect of intramolecular conformational flexibility
are incorporated into Brownian dynamics simulations8 of
association-dissociation reactions of either small molecule
ligands and proteins or pairs of macromolecules. The idea is
to carry out Monte Carlo simulations on specific substruc-
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tures wherein the degrees of freedom are individual torsion
angles or sets of torsion angles. Issues that arise in torsional
space molecular dynamics and hybrid torsional space Monte
Carlo simulations,18–20 are best analyzed using model sys-
tems such as a serial chain of point masses.

A serial chain21 of point masses connected by bonds of
fixed length and fixed bond angles is a reasonable model for
simulating the equilibrium properties of isolated polymer
chains or independent substructures within larger macromol-
ecules. The relevant degrees of freedom in such a system are
the so-called soft internal degrees or torsion angles. This
system has been of long standing interest in the polymer
literature.22,23 For a chain with (n11)-point masses con-
nected byn bond lengths,n21 bond angles, andn22 tor-
sion angles there are 3n23 internal degrees of freedom, and
six remaining degrees of freedom for rigid body motion of
the chain. When bond lengths and bond angles are frozen,
there are onlyn14 degrees of freedom corresponding ton
22 torsions and six degrees of freedom for rigid body mo-
tion.

For a HamiltonianH(p,q), written as a sum of kinetic
K(p) and potentialU(q) energy terms, whereq denotes gen-
eralized coordinates andp the generalized momenta, the par-
tition function in ann-V-T ensemble, following integration
over the all generalized momenta, isQ5C* exp(2U(q)/
kBT)det@G(q)#1/2dq. Here, G~q! refers to a (3n13)3(3n
13) mass-metric tensor the (k,l )th element of which is of
the form gkl5( i 50

n11mi(]r i /]qk)•(]r i /]ql)•r i denotes Car-
tesian coordinates of individual mass pointsmi in a space-
fixed reference frame,kB is the Boltzmann constant, andT is
the temperature. Conversely, for a chain with fixed bond
lengths and bond angles, the partition function, written
in terms of the unconstrained ‘‘soft’’ generalized coordi-
nates qs , i.e., the torsions alone, takes the formQ
5* exp@2U(qs)/kBT#Adet@GS(qs)#dq, where Gs is a (n
14)3(n14) reduced mass-metric tensor for the manifold
defined by rigid bond lengths and bond angles. As is well
known,24–26the reduced mass-metric tensorGs is clearly not
the same as the full mass-metric tensorG. Furthermore, un-
like det~G!, which is typically independent of the values of
qs , i.e., chain conformation, det(Gs) is expected to depend
nonlinearly on the values of the coordinatesqs .25–30

A. Implication of det „Gs… for molecular simulations

Several researchers have studied the effect of constraints
on the equilibrium statistics and rates of conformational tran-
sitions in molecular dynamics simulations for chains with
frozen bond lengths and frozen bond angles.28,31–38Primarily
because momenta conjugate to unconstrained degrees of
freedom are set to zero,39 constraining bond lengths and
bond angles lead to artificial coupling between the uncon-
strained flexible degrees of freedom and introduces
biases22,24,39,25,28that must be removed by adding a compen-
sating potential Uc of the form Uc(qs)}2kBT/
2 ln@det(Gs)# ~Refs. 25 and 27! to the original potential func-
tion U(qs). Incorporation of compensating potentials into
torsional space molecular dynamics is now standard
practice37,38,40 and important algorithmic improvements for
the calculation of correction forces related to the compensat-

ing potential continue to be made41 although some algo-
rithms continue to ignore compensating potentials
altogether.42 However, for overdamped dynamics and state-
to-state transition probabilities in torsional space Monte
Carlo simulations, prescriptions regarding the use of com-
pensating potentials related to det(Gs) remain ambig-
uous.43–46 Theodorou and co-workers47 have shown that ra-
tios of mass-metric tensor determinants must be included in
the acceptance ratios for move sets that are based on con-
certed motions, i.e., for moves that vary collections of tor-
sion angles between fixed ends of a chain. Hoffman and
Knapp have adopted similar strategies in their ‘‘window
move Monte Carlo’’ simulations.48 If the goal is to design
move sets for torsional space Monte Carlo simulations with-
out loop closure, the question is as follows: Is it necessary to
include terms related to the mass-metric tensor determinant
det(Gs)? Unfortunately, the literature offers ambiguous ad-
vice for solving this important problem.5,6,49 It is difficult to
resolve these ambiguities withouta priori knowledge regard-
ing the conformational dependence of det(Gs) and a direct
comparison of thermodynamic averages between two types
of simulations, viz., torsional space molecular dynamics
simulations that include the Fixman potential and variants of
torsional space Monte Carlo simulations.

In order to understand the nature of the biases imposed
by constraints in molecular dynamics simulations without the
Fixman potential and to decide on the correct course of ac-
tion for Monte Carlo simulations it is essential that we un-
derstand the magnitude and the nature of the conformational
dependence of det(Gs) for a serial chain with frozen bond
lengths and bond angles.49 This is our objective in the current
paper. We focus on answering two important questions,
namely:~1! What is the nature of the conformational depen-
dence of det(Gs), i.e., what type of conformers maximize
det(Gs) and what type of conformers minimize det(Gs)? ~2!
What is the magnitude of variation in ln@det(Gs)# between
conformers that maximize det(Gs) and those that minimize
det(Gs)?

In order to answer the questions raised above we need a
method for computing det(Gs). The algorithm should permit
a comprehensive analysis of the structure ofGs and a physi-
cal interpretation tailor made to address the questions raised
above. An important upshot of our current study is the re-
finement of anO(n) algorithm proposed by Saha,50,51which
is an algorithm for the inverted inertia matrix of serial robot
arms, for computing det(Gs). The refined algorithm will
have practical use in future work on Monte Carlo simula-
tions.

In order to provide a rationale for our adaptation of Sa-
ha’s algorithm,51 we briefly review methods drawn from both
the polymer and robotics literatures for computing det(Gs)
and quantities related toGs . This is followed by a derivation
of an exact recursion relation for det(Gs) for a serial chain
with constrained bond lengths and bond angles. In the results
section we analyze the nature and magnitude of det(Gs) for
different chain conformers and varying numbers of torsional
degrees of freedom.Our work represents the first systematic
analysis of the variation ofdet(Gs) with chain conforma-
tional and chain length. The main finding is thatdet(Gs) is

12709J. Chem. Phys., Vol. 121, No. 24, 22 December 2004 Serial polymers with constraints

Downloaded 23 Dec 2004 to 128.252.66.3. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



maximized for spatial conformations and minimized for pla-
nar conformations. We conclude with a brief discussion on
the implication of our findings for the design of torsional
space Monte Carlo simulations in polymeric systems.

B. Algorithms for computing det „Gs…

Calculation of det(Gs)—Fixman’s method: The most
popular approach in the polymer literature relies on the as-
tute observations made by Fixman25,27regarding the relation-
ship between the determinant of the full mass-metric tensor,
det~G!, which is easily calculated,25 and the determinant of
the reduced mass-metric tensor, det(Gs). Fixman showed
that, det(Gs)5det(G)det(H). The elements ofH, viz., hkl

5( i 50
n11(1/mi)(]qk

H/]r i)•(]ql
H/]r i), whereql

H and qk
H refer

to the constrained generalized coordinates or hard modes, are
easier to compute, when compared to the elements ofGs .
For the case of fixed bond lengths and flexible bond anglesH
is a tridiagonal matrix and det~H! can be obtained using a
simple recursion relation. For rigid bond lengths and bond
angles, the matrixH has band limit five, and although det~H!
cannot be obtained using the same recursion relation as in
Fixman’s paper,25 appropriate strategies for matrix decompo-
sition may still ensure anO(n) algorithm. However, since
calculation of det~H! relies on prior knowledge of individual
elements of theH matrix, generalization of Fixman’s ap-
proach to chains with arbitrary constraints or long chains
with frozen bonds is unlikely to be an efficient process.38

Calculation ofdet(Gs)—methods from the robotics lit-
erature: In the field of robotics, mass-metric tensors and their
inverse play an integral part of algorithms for forward and
inverse dynamics.52–54 Within the robotics literature, there
are two categories of algorithms to compute the mass-metric
tensor determinant and associated gradients.51 In the first ap-
proach, elements of the mass-metric tensor are determined
individually55,56and the required determinants are calculated
using techniques such as Cholesky decompositions,57 the
complexity of which grows asO(n3).55,56 In the second ap-
proach, algorithms based on recursion relations reduce the
computational complexity toO(n).

One of the best-knownO(n) algorithms is based on the
so-called spatial operator factorization technique developed
by a group of researchers at the Jet Propulsion
Laboratory.38,58–61These algorithms rely on a fundamental
analogy between the dynamics of multibody robots and the
recursive equations of Kallman filtering.62 Two distinct fac-
torizations are realized, namely, one for the mass-metric ten-
sor and the second for the inverse of the mass-metric
tensor,58,59 both of which are similar to covariance
factorizations62 which produce highly efficientO(n) algo-
rithms both for the calculation of mass-metric tensor deter-
minants and for forward and inverse dynamics in serial ro-
botic systems and polymeric systems.38,58–61,63 As an
illustration of the latter, Jain has implemented a recursive
algorithm based on spatial operator algebra that does not
require explicit computation of the mass-metric tensor.38

This method, available as part of theNEIMO software
package,63 is especially well suited to tree-topology and se-
rial macromolecules with hard constraints.38,63

Spatial operator algebra clearly leads to a class of effi-
cient algorithms for molecular dynamics in internal coordi-
nate space. However, the use of this approach does not serve
our twofold purpose of first, carrying out a direct analysis of
the behavior of det(Gs) as a function of chain length and
second, obtaining a physical interpretation regarding the na-
ture of the conformational dependence of this quantity. Al-
ternatively, Saha has proposed an approach based on appli-
cation of Gaussian elimination to elements of the mass-
metric tensor.50,51 Saha has shown that in addition to
preserving the recursive schemes necessary forO(n) algo-
rithms, the method of mass-metric tensor decomposition also
provides a clear physical/geometric interpretation, which al-
lows us to understand the magnitude and nature of the bias
imposed by the presence of the term det(Gs) in the equilib-
rium partition function for a chain with constraints. Hence,
we adapt Saha’s algorithm51 to the problem of interest, viz.,
the calculation, and analysis of det(Gs) as a function of vary-
ing numbers of torsional angles for serial chains with con-
strained bond lengths and bond angles.

II. DERIVATION OF THE RECURSION RELATIONSHIP
TO CALCULATE det „Gs…

The polymer model: Fig. 1 shows the geometry of the
model system withn11 point masses~labeled 0, 1, 2,...,n!
connected byn21 bond angles~labeled 1, 2,...,n21) and
n22 torsion angles~labeled 1, 2,...,n22). For an isolated
serial chain with rigid bond lengths and bond angles, the
generalized coordinatesqs5(a,a,b,g,f1 ,...,fn22) are a
combination of torsion angles, (f1 ,...,fn22), and rigid-
body motions~a,a,b,g!. Let Rzxz(a,b,g) be a rotation ma-
trix, parameterized using Euler angles in theZXZ
convention,64,65anda be the translational vector for displace-
ment of the polymer chain from the inertial frame in three-
dimensional Cartesian space~Fig. 1!. The equilibrium bond
lengths are labeled asLi for i 51,...,n; bond angles areu j for
j 51,...,n21, and the torsion angles arefk for k51,...,n
21. Reference framesFi are attached to each point massi;
i 50,...,n such that we get the following.

~1! The axiszW i is along bondi; i 51,...,n; zW0 is along
bond 1.

~2! The axisyW 0 is such thatm0 , m1 , andm2 are con-
tained in the planeyW 0OzW0 ; then,xW05yW 03zW0 .

~3! F1 is parallel with frameF0 ; the transformation
from F0 to F1 is represented by a translation along the axis
zW0 with L1 .

~4! The transformation fromF1 to F2 is composed from
a rotation with the angleu1 around axisxW1 followed by a
translation along the rotatedzW1 with L2 .

~5! The transformation fromFi 21 to Fi is composed
from a rotation with magnitudef i 21 aroundzW i 21 followed
by a rotation withu i 21 around the newxW i 21 followed then
by a translation withLi along the newzW i ~Fig. 1!.

Let x05@0 0 0# denote the relative position of massm0

in the frame of reference attached to the base of the chain—
F0 , andr05a be its absolute position,~Fig. 1!. Likewise,

x15@0 0 L1#T, r15Rzxz~a,b,g!x11a, ~1!
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r25r11Rzxz~a,b,g!rotx~u1!@0 0 L2#T ~2!

with

Rotz~a!5F cosa 2sina 0

sina cosa 0

0 0 1
G ,

Rotx~a!5F 1 0 0

0 cosa 2sina

0 sina cosa
G .

Note that due to the serial nature of the chain, the Cartesian
coordinates fori 53,...,n,

r i5r i 211LiRzxz~a,b,g!

3Ri 21~f1 ,...,f i 22 ;u1 ,...,u i 22!ûi~f i 21 ,u i 21!, ~3!

whereRi 21 is a rotation matrix that describes the orientation
of framei 21 with respect to the base frame. This matrix can
be computed by concatenating local changes in orientation as

Ri 215R1
0~0,0!R2

1~0,u1!¯Ri 21
i 22~f i 22 ,u i 22!, i 52,...,n

~4!
Rk11

k ~fk ,uk!5Rotz~fk!Rotx~uk!, k51,...,n21.

The vectorûi is unitary, pointing in the direction of bondi as
seen in reference framei 21 attached to the intersection of
bondsi 21 andi •ûi5Ri

i 21(f i 21 ,u i 21)ê3 ; ê35@0 0 1#T.
We use the rigid-body transformation@Rzxz(a,b,g),a#

to describe the position and orientation of a frame of refer-
ence attached to the proximal end of the chain relative to the
inertial frame. The position of any point on the polymer rela-

tive to the proximal end frame is a function of the torsions
alone. Hence, the position of theith point mass in the system
with respect to inertial space will be

r i5Rzxz~a,b,g!xi1a. ~5!

Kinetic energy in terms of the generalized velocities: We
first recast the mass matrix in a form that will allow us to
compute the determinant using anO(n) algorithm. The ki-
netic energy of the system is

K5
1

2 (
i 50

n

mi ṙ i
Tṙ i . ~6!

Position vectors of the point masses in the inertial frame take
the form

r i5r i 211LiR̃i ê3 , i 53,...,n, ~7!

where R̃i5Rzxz(a,b,g)Ri is the rotation matrix from the
inertial frame to the framei in the chain and can be ex-
pressed as

R̃i5R̃i 21Ri
i 21~f i 21 ,u i 21!, i 52,...,n. ~8!

The velocity of theith point mass is then:

ṙ i5 ṙ i 211LiRP i ê3 , i 53,...,n. ~9!

The same quantity expressed in theith reference frame be-
comes

R̃i
Tṙ i5R̃i

Tṙ i 211LiR̃i
TRP i ê3 ,

~10!
vi5Rotx~u i 21!TRotz~f i 21!TR̃i 21

T ṙ i 212Skew~ ê3Li !vi ,

FIG. 1. Polymer model: Cartoon for the macroscopically serial chain withn11 mass points,n-massless links,n-1 bond angles, andn-2 torsions. The base
of the chain, mass-pointm0 is freely floating with respect to the inertial axes.
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wherevi is the angular velocity of the framei relative to the
inertial frame, but expressed in framei and Skew~v! is the
skew symmetric matrix associate withv:66

vi5Ri
i 21~f i 21 ,u i 21!Tvi 211Rotx~f i 21!Tê3ḟ i 21 ,

i 53,...,n. ~11!

Substitutingvi from Eq.~11! into Eq.~10!, vi andvi will be
expressed as functions ofvi 21 and vi 21 and ḟ i 22 . There-
fore

vi5Ri
i 21~f i 21 ,u i 21!Tvi 21

2LiSkew~ ê3!Ri
i 21~f i 21 ,u i 21!Tvi 21

2LiSkew~ ê3!Rotx~u i 21!Tê3ḟ i 21 , i 53,...,n.

~12!

In compact notation, Eqs.~10! and ~11! can be written as

Fvi

vi
G5Bi ,i 21Fvi 21

vi 21
G1piḟ i 21 , i 53,...,n, ~13!

whereBi ,i 21 andpi are given by

Bi ,i 215F Rotx~u i 21!TRotz~f i 21!T 0333

2Skew~Li ê3!Rotx~u i 21!TRotz~f i 21!T Rotx~u i 21!TRotz~f i 21!TG ,
~14!

pi5F Rotx~u i 21!Tê3

2Skew~Li ê3!Rotx~u i 21!Tê3
G .

For the first three mass points, we have

v05Rzxz~a,b,g!Tȧ, ~15!

v15Rzxz~a,b,g!Tȧ2L1Skew~ ê3!JRF ȧ

ḃ
ġ
G , ~16!

v25Rotx~u1!Tv15Rotx~u1!TJRF ȧ

ḃ
ġ
G , ~17!

v25H Rotx~u1!TRzxz~a,b,g!Tȧ2@L1Rotx~u1!TSkew~ ê3!

1L2Skew~ ê3!Rotx~u1!T#JRF ȧ

ḃ
ġ
G J , ~18!

where

JR5S sinb sing sinb sing 0

sinb cosg 2sing 0

cosb 0 1
D .

In compact notation

F v0

v1

v2

v2

G5P1F ȧ
ȧ

ḃ
ġ
G , ~19!

where

P15F Rzxz~a,b,g!T 0333

Rzxz~a,b,g!T 2L1Skew~ ê3!JR

0333 Rotx~u1!TJR

Rotx~u1!TRzxz~a,b,g!T 2@L1Rotx~u1!TSkew~ ê3!1L2Skew~ ê3!Rotx~u1!T#JR

G . ~20!
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The expression for the kinetic energy can be written in a
more concise form using spatial vectors,58

K5
1

2 (
i 50

n

mi ṙ i
Tṙ i5

1

2
@ ṙ0

T ṙ1
T v2

T ṙ2
T v3

T ṙ3
T

¯#M 3
ṙ0

ṙ1

v2

ṙ2

v3

ṙ3

]

4 ,

~21!
M5M1% M2% M3%¯% Mn

with M15@0333

m01333
m11333

0333 #•M is constructed using a matrix

direct sum~%!

M i5F0333 0333

0333 mi1333
G , i 52,...,n,

which is simply a block matrix constructed from a set of
square matricesM i , i 51,...,n.

Using Eqs.~13! and ~19! the kinetic energy is rewritten
as a function of velocities expressed in frames attached to
individual mass points as

3
ṙ0

ṙ1

v2

ṙ2

v3

ṙ3

¯

4 53
R0 0333 0333 0333 0333 0333 ¯

0333 R1 0333 0333 0333 0333 ¯

0333 0333 1333 0333 0333 0333 ¯

0333 0333 0333 R2 0333 0333 ¯

0333 0333 0333 0333 1333 0333 ¯

0333 0333 0333 0333 0333 R3 ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯

4
33

v0

v1

v2

v2

v3

v3

¯

4 . ~22!

We rewrite the combined velocity vector in compact
form using the so-called natural orthogonal component
~NOC! matrix introduced originally by Angeles and Lee67 to
relate angular and translational velocities of rigid bodies to

the velocities of joints for serial robotic manipulators.68 Saha
used a decoupled form of the NOC matrix for the velocity
vector of serial robotic manipulators with fixed base.47 In
adapting Saha’s algorithm, we have generalized it to apply
for a chain of point masses connected by inextensible mass-
less bonds, with the base of the chain freely floating. Here

3
v0

v1

v2

v2

v3

v3

]

4 5N1NdF ȧ
ȧ

ḃ
ġ

ḟ1

]

G . ~23!

The matricesN1 andNd are of the form

N15F 1636 0636 0636 ¯ 0636

0636 1636 0636 ¯ 0636

0636 B3,2 1636 � 0636

] ] ] � ]

0636 Bn,2 Bn,3 ¯ 1636

G
6n36n

,

~24!

Nd

5F P1~1236! 01231 01231 ¯ 01231

0636 p3~631! 0631 ¯ 0631

0636 0631 p4~631! ¯ 0631

] ] ] � ]

0636 0631 0631 ¯ pn~631!

G
6n3~n14!

.

The kinetic energy now becomes

K5
1

2
@ ȧT ȧ ḃ ġ ḟ1 ¯#Nd

TN1
TMN1NdF ȧ

ȧ

ḃ
ġ

ḟ1

]

G . ~25!

From Eq.~25! the generalized mass metric tensor is

Gs5Nd
TN1

TMN1Nd . ~26!

The matrix P1 can be further decomposed asP1(1234)

5P̂1(1234)
Â1(436)

where

P̂15F 1333 0333

1333 2Skew~ ê3L1!

0333 Rotx~u1!T

Rotx~u1!T 2@Rotx~u1!TSkew~ ê3L1!1Skew~ ê3L2!Rotx~u1!T#

G , ~27!
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Â5FRzxz~a,b,g!T 0333

0333 JR
G , ~28!

Nd5N̂dF Â 0636

0636 1~n22!3~n22!
G , N̂d

5F P̂1~1236! 01231 ¯ 01231

0636 p3~631! ¯ 0631

] ] � ]

0636 0631 ¯ pn~631!

G . ~29!

Finally, the desired determinant det(GS) is written as

det~GS!5sin2 b det~ĜS!, ~30!

where

ĜS5N̂d
TN1

TMN1N̂d .

Each 636 block along the diagonal of the 6n36n matrix
N1

TMN1 in Eq. ~30! may be interpreted as the extended mass
of a composite chain consisting of mass pointsi ,...,n con-
nected by massless inextensible bonds.

Calculation ofdet(Gs) using Saha’s algorithm: Eq. ~30!
reduces the problem of interest to a calculation of det(Ĝs).
This is accomplished using anO(n) algorithm developed by
Saha.47 For the symmetric, positive-definite matrixĜs a re-
verseGaussian elimination is recursively applied47,66 until
we get to the block defined by the matrixP̂1 . This leads to
the decompositionĜs5ÛD̂ÛT, where D̂ is a (n14)3(n
14) diagonal matrix andÛ is a unit upper triangular matrix
such that det~Û!51 and det(Ĝs)5det(D̂). Here

D̂5F Q1 0 0 0 0

• m̂3 0 0 0

• • m̂4 0 0

• • • 0

• • • • m̂n

G , ~31!

det~ĜS!5det~Q1!)
i 53

n

m̂i . ~32!

In the reverse Gaussian elimination51 procedure the ma-
trix ĜS is reduced to a lower triangular form via successive
premultiplication of the original matrix by a series of so-
called elementary upper triangular matrices~EUTMs!. This
is to be contrasted with the conventional Gaussian
elimination51,69 procedure, which reduces the original matrix
to an upper triangular form via successive premultiplication
of the original matrix, by a series of so-called elementary
lower triangular matrices,~ELTMs!. Reverse Gaussian elimi-
nation is applied to take advantage of the fact that for the
serial chain, elements of the decoupled form of the NOC
matrices28 are written in terms ofBi ,i 21 and pi ,14 and the
elements of both these matrices depend only on the orienta-
tions of local frames of reference. The concatenation of local
frames leads to simplified recursion relations for the ele-
ments of the final upper triangular matrix and theO(n) al-
gorithm for the evaluation of the determinant ofĜS. The

main ideas behind the reverse Gaussian elimination proce-
dure proposed by Saha47 are summarized in the Appendix.

Physical/geometric interpretation of scalar quantities:
Following Saha,47 we interpret each scalarm̂k , (k53,...,n)
as the rotational inertia of the distal end of the chain that
emanates from mass-pointmk as measured about the axis of
rotation parallel to thekth bond. Each of the scalars is cal-
culated using the formula

m̂k5~pk!136
T ~Ĉk!631 , pivot at the kth step. ~33!

Premultiplication of the matrixĜS by an EUTM leads to a
new matrix and the introduction of a column with zeros
above the diagonal. For thekth step if we denote the result-
ant matrix asĜS

(k) , the pivot element at thekth step corre-
sponds to the diagonal element of the column above which
all elements are zero. Fork53,...,nĈk in Eq. ~33! is ob-
tained using recursion relations of the form,

Ĉk5M̂ kpk ,

M̂ k5M k1Bk11,k
T ~M̂ k112Ĉk11Ck11!Bk11,k ,

Ck5
Ĉk

m̂k
, ~34!

M k5F0333 0333

0333 mk1333
G , k53,...,n,

M̂n5Mn .

The 636 matrix Q1 is defined as

Q15P̂1
T$M1% @M21B3,2

T ~M̂31Ĉ3C3
T!B3,2#%P̂1 . ~35!

The determinant ofQ1 can be evaluated analytically or nu-
merically and the desired determinant of the reduced mass-
metric tensor is

det~Gs!5sin2 b det~Q1!)
i 53

n

m̂i ~36!

III. ANALYSIS OF det „Gs… AS A FUNCTION
OF INCREASING NUMBERS OF TORSION ANGLES

We now proceed to analyze the nature and magnitude of
the conformational dependence of det(Gs) for serial chains
of different lengths in different conformations. In the follow-
ing discussion all references to det(Gs) in actuality refer to
det(Ĝs), which is directly related to det(Gs) as shown in Eq.
~30!. We calculate det(Ĝs) using the recursion relations in
Eqs.~32!, ~33!, ~34!, and~35!. We focus our attention on the
nature of two types of conformations, viz., those that maxi-
mize det(Gs), and those that minimize this quantity. In gen-
eral, we find that spatial conformers have larger values for
det(Gs) when compared to planar conformers. In all of our
calculations, all bond lengths were set to be 1 Å, masses
were set to unity, and all bond angles were fixed at 109°. The
fact that planar conformations minimize det(Gs) is valid re-
gardless of the value of bond angle. In what follows,n de-
notes the number of mass points andnf denotes the number
of torsions.
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Analysis of the conformational variation of det(Gs) for
n54 and 5: We first evaluate the dependence of det(Gs) on
the torsion angles by calculating this determinant for all pos-
sible conformations for chains withn54 andn55. Figure 2
shows the variation of det(Gs) as a function off for n54.
Our results are in agreement with results reported in the
literature.29,35A contour plot of det(Gs) as a function of tor-
sion anglesf1 andf2 is shown in Fig. 3 for the chain with
n55. Forn54, det(Gs) is minimal for values off'0° and
f'6180° whereas det(Gs) is maximal forf'690°. Simi-
larly for n55, det(Gs) is minimized for (f1 ,f2)'0° and
(f1 ,f2)'6180° whereas det(Gs) is maximal for
(f1 ,f2)'690°. Settingf i'0° or f i'180° for i 51 or 2
and f j'690° for j 51 or 2 leads to local extrema, as
shown in Fig. 3.

Extrema of det(Gs) for longer chains: Ideally, one would
like to enumerate all possible conformations, compute
det(Gs) for each conformer, and analyze the resultant hyper-
surface. However, exhaustive enumeration is not feasible be-
cause of rapid growth in the number of conceivable conform-
ers. Therefore, we simplify the analysis by restricting our
attention to conformers generated by combinations of two
torsion angle values, viz.,f i'690° andf i'180° or 0°.
For chains of lengthn with nf torsion angles, we generated
2nf conformations. The procedure we use is as follows: for a
chain with nf11 torsion angles, we start with each of the
2nf conformers that minimize or maximize det(Gs) for a
chain with nf torsion angles, and use a Hooke-Jeeves
optimization69 scheme to calculate the determinant for ex-
tremal conformations chains extended by one bond. This
procedure yields conformers that can be clustered into two
distinct sets, viz., the set of conformers, referred to as$Max%,
which corresponds to combinations of torsion angles that
maximize det(Gs) and a second set of conformers, referred
to as$Min%, which is generated by combinations off angles
that minimize det(Gs). For a chain withnf angles, there are
2nf local minima in the set$Min% and 2nf local maxima in
the set$Max%.

Nature of conformers that minimize/maximize det(Gs):
The two sets$Min% and $Max% comprise conformations that

are both regular and random-coil-like. The ratio of the num-
ber of random coil70 to the number of regular conformations
is roughly similar in both sets since the values of the torsion
angle, which minimize the metric tensor determinant, are
'6180°, whereas those that maximize it are'690°. Fig-
ures 4–7 show the extreme conformations within each set
$Min% and$Max% for a chain withnf58. Note that the con-
formations shown in Figs. 4 and 7 are not all self-avoiding.
Although planar sheets/strands are not conformers that glo-
bally minimize the value of det(Gs), they are the only rep-
resentative conformations from the set$Min% that are both
well ordered and free of steric clashes. Similar arguments
hold for spatial helices that maximize the value of det(Gs).

Behavior of det(Gs) as a function ofnf : Analyzing the
range of det(Gs) values within and between the sets$Min%
and $Max% provides a sense of how det(Gs) varies across
contiguous regions in multidimensional space. We have
quantified the influence of the number of torsionsnf on the
value of det(Gs) for the type of extrema shown in Figs. 4–7.
In the analysis that follows, for a chain of lengthnf , we use
the notations described below.

~1! G1 : Is the value of det(Gs) for the conformer that
corresponds to the global minimum.

~2! G2 : Is the maximum value of det(Gs) in the set
$Min%.

~3! G3 : Is the smallest possible value of det(Gs) for
conformers in the set$Max%.

FIG. 2. Plot of det(Ĝs) vs f for a chain with four mass points,nf51.

FIG. 3. Contour plot of det(Ĝs) for a chain with five mass-points,nf52.
The two axes show the two torsion anglesf1 andf2 .

FIG. 4. Self-intersectingplanar conformationP$Min% with nf58 for which
the determinant det(Ĝs) is a global minimum.
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~4! G4 : Is the value of det(Gs) for the global maximum.
Variation of det(Gs) for transitions between conformers

within $Min% or $Max%: In Fig. 8 we show a plot of the ratio
G2 /G1 as a function of chain length. This quantity assesses
the degree of variation in det(Gs) values for conformers
within the set$Min%. Variations between the extrema within
the set $Min% are small. More importantly, in molecular
simulations we would be interested in quantities related to
ln@det(Gs)#, and from Fig. 8 it is clear that for regions of
conformation space corresponding to those in the set$Min%
the degree of variation in ln@det(Gs)# is negligible. Similar
conclusions result from an analysis of the ratio ofG4 /G3 as
a function of chain length for conformers that belong to the
set $Max%.

Variation of det(Gs) for transitions between conformers
that are in different sets, viz.,$Min% and $Max%: We now
proceed to analyze the behavior of det(Gs) for conformers
drawn from the two different sets, namely,$Min% and$Max%.
In Fig. 9, we show a plot of the ratio log10(G3 /G2) as a
function of nf . Clearly, the minimal value of det(Gs) over
all conformations that belong to the set$Max%, G3 remains
well separated from the maximum value of det(Gs) over all
conformations that belong to the set$Min%, G2 . This sug-

gests that the change in det(Gs) is quite drastic for transitions
between spatial and planar conformers.

Decomposing the contributions to det(Gs): From Eq.
~32!, it follows that the determinant det(Ĝs) is a product of
two components.

~1! In the first termP i 53
n m̂i eachm̂i denotes the rota-

tional inertia of the distal end of the chain that emanates
from mass-pointmi as measured about the axis of rotation
parallel to theith bond. The product is the mass-metric ten-
sor determinant for a chain with its proximal end fixed in
space.

~2! The second term det(Q1) represents the effect of the
floating base on the mass-metric tensor determinant. The
term det(Q1) reflects the coupling between the rigid body
coordinates~spatial degrees of freedom! and chain confor-
mation ~internal coordinates!. This coupling enters the ex-
pression forQ1 through the termsĈ3 andM̂3 . det(Q1), is a
measure of the conformation-dependent translational and
orientational entropy of the chain.

In order to estimate the relative contribution of the two
components,P i 53

n m̂i and det(Q1) to the value of det(Gs) we
compute the ratioF5Adet(Q1)/P i 53

n m̂i as a function ofnf

for conformations that constitute the upper and lower bounds
in the two sets$Min% and $Max%. Results so obtained are
shown in Fig. 10. The ratioF exhibits different behavior for
extrema drawn from the two sets$Min% and $Max%, respec-
tively. WhereasF decreases asnf increases for conformers
from the set$Min% it increases for conformers from the set
$Min%. Upon comparison of the results from Figs. 8 and 9 to
those in Fig. 10, we find that the evolution of the ratio

FIG. 5. Regular, sterically realizable planar conformationP$Min% with nf

58 for which the determinant det(Ĝs) is a local minimum.

FIG. 6. Regular, sterically realizablespatial conformationP$Max% with nf

58 for which the determinant det(Ĝs) is a local maximum.

FIG. 7. Self-intersecting spatial conformerP$Max% with nf58 for which
the determinant det(Ĝs) is a global maximum.

FIG. 8. Variation of the ratioG2 /G1 as a function ofnf . G2 andG1 are
defined in the text. This ratio indicates that the extent of variation of det(Gs)
and especially of ln@det(Gs)# with nf is negligible for conformers drawn
from the set$Min%. Similar results are obtained for the ratioG4 /G3 as a
function of nf .
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G2 /G1 ~and G4 /G3) as a function ofnf is mainly influ-
enced by the behavior of det(Q1). Conversely, the product
P i 53

n m̂i is the main factor in the evolution of the ratio
log10(G4 /G3). Furthermore, det(Q1) decreases with increas-
ing nf whereas,P i 53

n m̂i continues to increase as a function
of chain length. This result is illustrated by Fig. 11, which
plots the variation of

ln~q1 /q2!5 ln Adet~Q1! for lower bound in$Max%/det~Q1! for upper bound in$Min%

and ln(m1 /m2)5ln(Pi53
n m̂i for lower bound in$Max%/

P i 53
n m̂i for upper bound in$Min%) as a function ofnf .

Our results support the following conclusion: the variation in
the behavior of det(Gs) for conformational transitions be-
tween the sets$Min% and$Max% does not lie in inertial quan-
tities associated with det(Q1) or ln@det(Q1)#, which quanti-
fies the translational and orientational entropy of the chain.
Instead, the differences are mainly due to contributions from
inertial quantities associated with internal coordinates, i.e.,
by terms related to the conformational entropy of the chain.

IV. SUMMARY

We have carried out a systematic analysis of the nature
and magnitude of the conformational dependence of det(Gs).
This topic has been an issue of intense scrutiny and debate in
the polymer literature28–30,32–34,26,35,36,23and has spurred the
development of elegant proposals for computing det(Gs) and
associated quantities.9,25,27,38,51However, a systematic analy-
sis of the conformational dependence of det(Gs) is missing.
To some extent, this reflects the continued belief that com-
puting det(Gs) is challenging,38,49a belief that is endorsed by
the lack of this analysis in any of the original algorithmic
papers.25,38

In order to carry out the proposed analysis we have
adapted and refined a novel algorithm developed in the ro-

botics literature.50,51 A complete derivation of thisO(n) al-
gorithm has been provided in Sec. II. In Sec. III, we carried
out a systematic analysis of the conformational dependence
of det(Gs). Our conclusions are as follows:~1! det(Gs) is
maximized for spatial conformers and minimized for planar
conformations.~2! The difference in det(Gs) between spatial
and planar conformers is significant and, as one would logi-
cally expect,27 this difference increases with increasing chain
length.~3! The proposed algorithm for calculating det(Gs) is
unique and novel in that it allows us to decompose the dis-
tinct contributions made by spatial variables or translational
plus orientational entropy@det(Q1)# and internal coordinates
(P i 53

n m̂i) or conformational entropy to det(Gs). The extent
of coupling between the two quantities is such that the domi-
nant contributions to the variation of det(Gs) with conforma-
tion do not come from the coupling between conformational
and translational plus orientational quantities. Instead, the
main source of conformational heterogeneity of det(Gs)
arises from quantities that depend on the torsion angles
alone. We have been able to arrive at all of these conclusions
because of the algorithm used to compute det(Gs), a full
derivation of which has been provided in Sec. II.

Implications for torsional space Monte Carlo simula-
tions:As noted in Sec. I A, ambiguous suggestions have been
made regarding the role of det(Gs) in torsional space Monte
Carlo simulations. Consider the following situation: suppose

FIG. 9. Variation of the ratioG1 /G2 as a function ofnf . This ratio quan-
tifies the variation in det(Gs) for transitions between spatial and planar
conformers. In this case, the variation of the ratio of det(Gs) or the ratio of
ln@det(Gs)# is not negligible.

FIG. 10. Plots ofF5Adet(Q1)/P i 53
n mi8, the ratio of spatial versus confor-

mational contributions to det(Gs), as a function ofnf . ~a! For the upper
bound in the set$Max%; ~b! for the lower bound in the set$Max%; ~c! for the
upper bound in the set$Min%; and~d! for the lower bound in the set$Min%.
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a proposed move to change torsion angles takes the chain
from conformation i to j. In order to ensure detailed balance
we require that:req(i)a(i→ j!acc~i→ j) 5req(j)a(j→ i!acc~j
→ i) where req(i) and req(j) are the equilibrium weights
associated with conformations i and j, respectively;a~i→j! is
the probability of making a transition between conformers i
and j, which we shall mandate is symmetric, i.e.,a~i→j!
5a~j→i!. Finally, acc~i→j! denotes the probability of ac-
cepting a trial move from i to j. The likelihood of accepting
a conformational transition i→j is dictated by the ratio:A
5acc~i→ j!/acc~j→ i). The standard literature on molecular
simulations provides three drastically different suggestions
for the form of A. These are as follows:~a! A
5det@Gs(j) #1/2exp(2bUj) /det@Gs(i) #1/2exp(2bUi) , ~b! A
5det@Gs(i) #1/2exp(2bUj) /det@Gs(j) #1/2exp(2bUi) , or ~c!
A5exp$2b@Uj2U i#%. The acceptance ratios may be written
in concise form as A5accG(i→ j!accB(i→ j!/accG(j
→ i!accB(j→ i) 5AGAB , whereAG denotes the contribution
from det(Gs) or ln@det(Gs)# andAB denotes the contribution
from relative Boltzmann weights. At issue, is the correct
form for AG . Frenkel and Smit5 suggest the use of option~a!

which corresponds to using the form of the integrand of the
torsional space partition realized upon integration over all
nonzero momenta~see Sec. I A!. Allen and Tildesley6 recom-
mend the use of option~b! which corresponds to the incor-
poration of a Fixman potential to remove an ostensible bias.
Finally, almost all torsional space Monte Carlo simulations
choose option~c!, i.e., the terms involving det(Gs) are ig-
nored, i.e.,AG51.44,49

What is the correct form forAG? In torsional space mo-
lecular dynamics simulations, conformations are sampled
from a probability density of the form: r(qs)
}Adet@Gs(qs)# exp@2bU(qs)#. As is well known, analysis
of equilibrium statistics and rates of conformational transi-
tions obtained from molecular dynamics simulations with
some holonomic constraints indicates the presence of biases
proportional to Adet(Gs), especially when compared to
simulations based on the use of stiff restraints. These biases
can be eliminated by incorporating a Fixman style compen-
sation potential as discussed in Sec. I A. This is necessary in
order to maintain congruence with statistics for systems
where the constraints are replaced by stiff restraints. If the
goal is to obtain similar congruence between torsional space
Monte Carlo simulations and molecular dynamics simula-
tions with stiff restraints, what is the correct choice for the
form of AG?

Based on our analysis, we conclude the following: if the
proposed transition is from one conformation in set$Min% to
another in the set$Min% or equivalently from one conforma-
tion in the set$Max% to another in the set$Max%, then for a
prescribed chain length, as shown in Fig. 8, the changes in
det(Gs) are negligible. Consequently, all three options~a!–
~c! outlined above will yield equivalent statistics. However,
such small-scale conformational transitions are never guar-
anteed in torsional space where one sees large-scale lever
arm effects for small changes in torsion angles,47 i.e., most
changes of torsion angles are likely to lead to transitions
between planar and spatial conformers or vice versa.

Based on det(Gs) values obtained using the algorithm
presented in this work, we have tried to resolve the issue of
choosing between the three different suggestions for the
functional form of acceptance ratios. We accomplished this
by comparing the statistics from torsional space Monte Carlo
simulations to those obtained using molecular dynamics
simulations with stiff bond lengths and bond angles. We will
present the details of our calculations elsewhere. Here we
present the main conclusions from our analysis. We conclude
that the correct form for the acceptance ratio is option~c!,
i.e., AG51. One need worry about the biases due to mass-
metric tensor determinants only in torsional space molecular
dynamics simulations where the momenta conjugate to the
soft modes are explicitly computed and specific momenta
conjugate to the frozen bond lengths and bond angles are
explicitly set to zero. The Fixman potential in molecular dy-
namics simulations eliminates biases by accounting for the
loss in entropy associated with the freezing momenta conju-
gate to constrained coordinates. Upon elimination of the
bias, we restore the Hamiltonian to one wherein the thermal
and excess parts are separable. This is the starting point for
the design of Monte Carlo simulations. In this limit, there is

FIG. 11. Variation of

ln~q1 /q2!5ln
Adet~Q1! for lower bound in$Max%

det~Q1! for upper bound in$Min%

as a function ofnf ; ~b! variation of ln(m1 /m2) as a function ofnf .
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no a priori justification for the assumption of preexisting
biases as is done in option~b! or for imposing biases related
to volume elements as is done in option~a!. This is espe-
cially true if one is interested in generating equilibrium sta-
tistics that are concordant with those obtained from simula-
tions of systems wherein the constraints are replaced by stiff
restraints. Hence, we propose that option~c! is the correct
option for the acceptance ratio in Monte Carlo simulations
without loop closure moves.71–73Our conclusions are in line
with the results of Perchaket al.74 who found that mass-
metric tensor biases diminish as a function of increased fric-
tion in Brownian dynamics simulations and in the over-
damped limit, where the momentum autocorrelation function
decreases rapidly, the biases introduced due to artifacts of
mass-metric tensor determinants are negligible.

APPENDIX: DETAILS OF SAHA’S ALGORITHM

The decomposition ofĜs in Eq. ~30! to Ĝs5ÛD̂Û,
whereD̂ takes the form shown in Eq.~31! is accomplished
using a reverse Gaussian elimination scheme proposed by
Saha.51 A common numerical approach in the computation of
determinants is the reduction of the original matrix to a tri-
angular form using Gaussian elimination. Details of the latter
are available in standard linear algebra textbooks.57 The main
idea is that the original matrix is premultiplied by a sequence
of so-called elementary lower triangular matrices~ELTM!,
where each ELTM is chosen such that premultiplication
yields a new matrix with a column with zeros below the
diagonal. Unlike conventional Gaussian elimination57 which
starts from the first column to make all elements except the
top one zero, Saha’s algorithm begins with the last column
such that all elements excepting the bottom most one be-
comes zero. Hence, the name reverse Gaussian elimination.
This procedure reflects the method of parameterization
wherein the position coordinates of each mass point in the
inertial frame are written in terms of the position coordinates
of the preceding mass-points. Saha’s method is applied to the
symmetric, positivedefinite matrixĜs shown in Eq.~30!. The
serial nature of the chain allows the procedure to be accom-
plished in O(n) steps. The algorithm, paraphrased from
Saha’s work, are as follows.

~1! An EUTM is first defined. This is analogous to the
elementary lower triangular matrix in conventional Gaussian
elimination. This

Ei51n83n82aili
T

matrix of order n85n14 and index i, is defined asai

5(a l i ,...,a i 2 l i ,0,...,0)T and leads

li5~0,...,0,1,...,0!T

to the elimination of all elements above the pivot.
~2! For i 5n8,

En85S 1 ¯ 2a1n

] � ]

0 ¯ 1
D

n83n8

.

Premultiplying Ĝs defined in Eq. ~30! by Ei for i
5n8,...,1 yields ann83n8 lower triangular matrixL̂ , i.e.,

El¯En8Ĝs5L̂ . The latter is a consequence of the particular
form for Ĝs shown in Eq. ~30!. Alternatively,
Ĝs5En8

21
¯El

21L̂5ÛL̂ where En8
21

¯El
21L̂[Û51n83n8

1ān8ln8
T

1¯1a1ll
T . The diagonal elements ofÛ are unity

and consequently the symmetric, positive-definite lower tri-
angular matrixL̂ may be rewritten asL̂5D̂ÛT, whereD̂ is
an n83n8 diagonal matrix whose elements are the diagonal
elements ofL̂ . The matrix Ĝs is now decomposed asĜs

5ÛD̂ÛT. Since the determinant of a unit upper triangular
matrix is unity, the required determinant det(Ĝs) is reduced
to the determinant of the diagonal matrix det~D̂!.
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43H. M. Ådland and A. Mikkelsen, J. Chem. Phys.120, 9848~2004!.
44W. L. Jorgensen,BOSS ~Yale University Press, New Haven, CT, 1997!.
45J. Schofield and M. A. Ratner, J. Chem. Phys.109, 9177~1998!.
46Y.-H. Lin and Z.-H. Luo, J. Chem. Phys.112, 7219~2000!.
47L. R. Dodd, T. D. Boone, and D. N. Theodorou, Mol. Phys.78, 961

~1993!.
48D. Hoffmann and E.-W. Knapp, Phys. Rev. E53, 4221~1996!.
49M. J. Field,A Practical Introduction to the Simulation of Molecular Sys-

tems~Cambridge University Press, Cambridge, 1999!. On pages 244–245,
the author makes the following comments that captures the essence of the
argument regarding det(Gs): ‘‘For simple molecules, the determinant is
relatively straightforward to evaluate but for larger molecules it is much
more complicated and it is this that has limited the application of the
Monte Carlo technique to these types of systems. Having said all this, it
should be noted that some workers have done Monte Carlo simulations
with a ‘normal’ Metropolis algorithm in which some of the internal de-
grees of freedom of the molecules are altered. The assumption is that the
errors introduced by the neglect of terms like those involving the matrixJ
in Eq. ~11.6! are small, although little work seems to have been done to
verify this.’’ The author usesJ to refer toGs and Eq.~11.6! in the text
involvesAdet(J), i.e., Adet(Gs).

50S. K. Saha, IEEE Trans. Rob. Autom.13, 301 ~1997!.
51S. K. Saha, Int. J. Robot. Res.18, 116 ~1999!.
52A. F. Vereshcagin, Eng. Cybernet.12, 65 ~1974!.
53D. S. Bae and E. J. Haug, Mech. Struct. Mach.15, 359 ~1987!.
54K. S. Anderson and J. H. Critchley, Multibody Syst. Dyn.9, 185 ~2003!.
55W. W. Armstrong,Proceedings of the Fifth World Conference on Theory

of Machines and Mechanics, edited by the American Society of Mechani-
cal Engineers, New York, 1979, p. 1343.

56M. W. Walker and D. E. Orin, ASME J. Dyn. Syst., Meas., Control104,
205 ~1982!.

57G. E. Stewart,Introduction to Matrix Computations~Academic, New
York, 1973!.

58G. Rodriguez and K. Kreutz-Delgado, IEEE Trans. Rob. Autom.8, 65
~1992!.

59G. Rodriguez, IEEE Trans. Rob. Autom.3, 624 ~1987!.
60A. Vaidehi, A. Jain, and W. Goddard, J. Phys. Chem.100, 10508~1996!.

61A. Jain, N. Vaidehi, and G. Rodriguez, J. Comput. Phys.106, 258~1993!.
62B. D. O. Anderson and J. B. Moore,Optimal Filtering ~Prentice-Hall,

Englewood Cliffs, NJ, 1979!.
63For more information regarding Newton-Euler Inverse Mass Operator~NE-

IMO! software package for torsional space molecular dynamics simulations
of large macromolecules, see http://dartslab.jpl.nasa.gov/NEIMO/index.php

64H. Goldstein,Classical Mechanics, 2nd ed.~Addison Wesley, Reading,
1980!.

65In theZXZ convention, the matrix for transformations form a space-fixed
set of axes to a frame of reference attached to a mass point is written as

A5S cosg cosa2cosb sina sing

2sing cosa2cosb sina sing

sinb sing

cosg cosa1cosb sina sing

2sing cosa1cosb sina sing

2sinb cosa

sing sina

cosg sina

cosb
D ~Ref. 64!.

Goldstein~Ref. 64! refers to theZXZ convention as thex convention.
66A skew symmetric matrix associated with the vectora5(a1 ,a2 ,a3) is
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