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Abstract A dynamic modeling of multibody systems having spherical joints is reported
in this work. In general, three intersecting orthogonal revolute joints are substituted for
a spherical joint with vanishing lengths of intermediate links between the revolute joints.
This procedure increases sizes of associated matrices in the equations of motion, thus in-
creasing computational burden of an algorithm used for dynamic simulation and control.
In the proposed methodology, Euler parameters, which are typically used for representation
of a rigid-body orientation in three-dimensional Cartesian space, are employed to repre-
sent the orientation of a spherical joint that connects a link to its previous one providing
three-degree-of-freedom motion capability. For the dynamic modeling, the concept of the
Decoupled Natural Orthogonal Complement (DeNOC) matrices is utilized. It is shown in
this work that the representation of spherical joints motion using Euler parameters avoids
the unnecessary introduction of the intermediate links, thereby no increase in the sizes of
the associated matrices with the dynamic equations of motion. To confirm the efficiency of
the proposed representation, it is illustrated with the dynamic modeling of a spatial four-
bar Revolute-Spherical–Spherical-Revolute (RSSR) mechanism, where the CPU time of the
dynamic modeling based on proposed methodology is compared with that based on the
revolute joints substitution. Finally, it is explained how a complex suspension and steer-
ing linkage can be modeled using the proposed concept of Euler parameters to represent a
spherical joint.
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1 Introduction

Dynamic analysis of multibody systems, e.g., robot manipulators and mechanisms, plays an
important role in investigation of their performances. The analysis consists of two branches,
which are: (i) Forward dynamics, where the forces acting on a mechanical system are known
and the equations of motion of the system are solved to obtain the motion of the system in
terms of linear and angular positions, velocities, and accelerations; (ii) Inverse dynamics,
in which the motion of each link is known and the aim is to find the forces required at
the joints to achieve the desired motion [1]. To perform the dynamics study, one requires
kinematic analysis, where an appropriate choice of the rotation representation of a rigid
link is important, particularly, for three-degree-of-freedom (DOF) motion of a rigid-body.
Three common rotational coordinates are: Euler angles, Euler parameters, and direction
cosines. Amongst all three, the Euler parameters have many advantages over both the Euler
angles and the direction cosines representations. Some of the advantages are that there is no
inherent geometrical singularity, and there is no orientation of a body for which the Euler
parameters cannot be defined. In addition, the rotation matrix using Euler parameters is
free of trigonometric functions in opposed of that using Euler angles. However, they are
dependent, as four variables are required to define any 3-DOF spatial rotation [1, 2].

Euler parameters are defined based on the Euler theorem [1], which states that the orien-
tation of a body with one point fixed can be defined by its rotation about an imaginary axis
by an angle β at any instant of time t . Accordingly, the Euler parameters are established as

e0 = cos(β/2); e = u sin(β/2); pe ≡ [
e0 eT

]T
(1)

where u is the imaginary axis about which the rotation of the body or a frame attached to it
happens. From (1), it is obvious that sum of the square of Euler parameters is equal to one.
In other words,

pT
e pe = 1 (2)

The rotation matrix, B, based on the Euler parameters, is thus obtained as [1]

B = (
2e2

0 − 1
)
1 + 2

(
eeT + e0ẽ

)
(3)

in which, 1 is the 3 × 3 identity matrix and ẽ is a skew-symmetric matrix associated with
vector e such that ẽx = e×x, for any 3-dimensional Cartesian vector, x. This is called cross-
product matrix in the paper to follow some literature like [3, 4]; however, that is identified
spin-tensor in some other literature. Hence, matrix ẽ is represented as

ẽ =

⎡

⎢
⎢
⎣

0 −e3 e2

e3 0 −e1

−e2 e1 0

⎤

⎥
⎥
⎦ (4)

Angular velocity of the body is then derived using the derivatives of the above Euler para-
meters as [1]

ω = 2Gṗe (5)
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where ω is the angular velocity of the body, whereas ṗe ≡ [ė0, ėT]T is the first derivatives of
the Euler parameters and G ≡ [−e, ẽ + e01].

For dynamic modeling, two popular approaches used are (i) Newton–Euler (NE), and
(ii) the Euler–Lagrange (EL) formulations [2]. The NE formulation in its original form is
straightforward and is able to find all of the forces including the reactions that are not es-
sential for simulation, i.e., the study of motions. Hence, this approach is not preferred for
the simulation of large systems. Alternatively, EL approach provides equations of motion
without the reaction forces. Hence, it is a simplified approach for simulation, but requires
complex partial derivatives. As a bridge between the above two formulations, i.e., one starts
with NE formulation and ends up with EL equations, several methods based on the orthog-
onal complements to the velocity constraint matrix have been proposed [5, 6]. One such
methodology uses the Decoupled Natural Orthogonal Complement (DeNOC) matrices [3]
that was originally proposed for serial rigid manipulator, but was later extended to paral-
lel [4] and general closed-loop systems [7] as well. One of the major advantages of using
the DeNOC matrices is the availability of recursive dynamics even for general closed-loop
systems. In the past, the use of the DeNOC matrices was presented for a mechanical sys-
tem, open or closed, with one-DOF revolute or prismatic joints only. In the presence of
higher DOF joints, namely cylindrical or spherical, they were treated as a combination of
revolute-prismatic or three intersecting revolute joints, respectively. For example, in [8], the
twist of a link connected to its previous one is given using three intersecting revolute joints.
Moreover, the kinematics of spatial revolute-spherical–spherical-revolute (RSSR) linkage
was analyzed in [9] by treating the spherical joints as three orthogonally intersecting rev-
olute joints. The dynamics of the same linkage was modeled in [7] using the kinematics
results of [9] and the DeNOC matrices. Such considerations cause an increase in the sizes
of associated matrices arising out of kinematics and dynamics modeling, thereby causing
inefficiencies in the resulting algorithms. Hence, the use of Euler parameters to represent
the motion of a spherical joint is proposed in [10]. Since spherical joint has many usages
in mechanisms, it has been studied in many articles. Robertson and Slocum developed a
high stiffness spherical joint capable of a large, singular free workspace [11]. The utilized
three frames to represent the relative location of the roll, pitch, and yaw axes of the spherical
joint. Attia studied a car suspension system [12] and a general serial chain [13], which have
several spherical joints.

In this paper, a spherical joint allowing three-DOF rotation is studied using Euler para-
meters. The resultant algorithm has reduced matrix sizes, which increases the efficiency of
the algorithm. To demonstrate this, the RSSR linkage studied in [7, 9] is analyzed, and the
CPU time for the inverse dynamics of the RSSR linkage is compared with those based on
the algorithm presented in [7]. The comparison proves the improved efficiency of the pro-
posed methodology. Finally, dynamic modeling of a suspension and steering linkage, as a
multiloop mechanism consists of several spherical joints, is described briefly.

This paper is organized as follows. Section 2 shows the kinematic analysis of a gen-
eral closed chain in detail considering the necessities of its dynamic modeling. In Sect. 3,
the DeNOC matrices, which were derived elsewhere for systems with only one-DOF revo-
lute/prismatic joints and explained in the Appendix, are improved for a body connected to
its previous one with a spherical joint and then the structure of the matrices for a multiloop
chain is presented. The proposed methodology in Sects. 2 and 3 is employed in Sect. 4 to
analyze an RSSR (Revolute-Spherical–Spherical-Revolute) linkage, as an example, and the
CPU time of this analysis is compared with same problem solved using revolute joints sub-
stitution. The complex linkage of suspension and steering system is also discussed in order
to demonstrate its modeling by use of the proposed concept of Euler parameters to represent
a spherical joint motion, followed by the conclusions in Sect. 5.
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The main contribution of this paper is to derive the DeNOC matrices for a multibody
system with one or some spherical joints by the use of Euler parameters.

2 Kinematic modeling

To illustrate the use of the Euler parameters to represent the spherical joint motion, a gen-
eralized closed-loop chain shown in Fig. 1(a) is considered whose links are numbered as
#1, . . . ,#h. The method of numbering will be discussed later. Using the Kutzbach crite-
rion [14], the degree of freedom (DOF) of the linkage can be found. Note that the existence
of a link connected to neighboring links with just two spherical joints causes a redundant-
DOF, which is the rotation of the link about its axis joining the centers of the spherical joints
and must be considered when the constraint equations are formulated. To find the number
of independent loops, the following simple expression can be used:

number of loops = number of joints − number of bodies (6)

On the other hand, one needs the topology of the linkage obtained from graph theory [15–
19] to find the best joints to be cut. Figure 1(b) shows a typical topology for the system
shown in Fig. 1(a). In this figure, the circles show the links, where the lines connecting the
circles are the indicators of the joints. Furthermore, a Cartesian coordinate is attached to
every link at its joint to describe the motion of the next consecutive link. The x-axis of this
coordinate is always taken along the link axis, while its z-axis is along the joint axis for
one-DOF revolute or prismatic joint. For the spherical joints, the direction of z-axis will be
discussed subsequently.

2.1 Kinematic constraints for a closed-loop system

Now, the constraint equations are formulated as follows:

• Three scalar equations for every loop-closure equation. As it is shown in Fig. 1(a), two
proper joints, e.g., 1 and h+1 of Fig. 1(a), are connected by a vector virtually. The vector
is calculated from two different paths like 1–2–3–. . .–(h + 1) and f –(f + 1)–(f + 2)–
. . .–(h + 1) of the closed loop. Equating the two, gives a vectorial loop closure equation,
whose three components are used here as three constraint equations;

• The dependency equations of the Euler parameters, i.e., (2);

(a) Closed-loop system (b) Topology of the system

Fig. 1 A general closed-loop system
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(a) A part of linkage with (b) A pair of two orthogonal revolute
substituted joint joints instead of a Hooke joint

Fig. 2 Substitution of a spherical joint with a Hooke joint

• Constraint equations to eliminate the redundant DOFs between every two spherical joints
connected by a link. In such situation, two orthogonal intersecting revolute joints, repre-
senting a Hooke joint are considered to replace the spherical joint, as indicated in Fig. 2.
The length of the imaginary link, i.e., #i’, is taken as zero. To write the mathematical
expression of this constraint, the rotation of the ith frame in fixed frame is constant from
right side or from left side of the chain. This constraint is explained in detail for an RSSR
linkage in Sect. 4.

Now, these constraint equations are expressed in vector form as

ϕ(q) = 0 (7)

where q ≡ [oT rT]T is the vector of generalized coordinates of o and r representing the vec-
tors of unknown and known variables, respectively. This partitioning helps one to solve (8)
for the generalized speeds presenting the time derivatives of generalized coordinates easily.
To derive the angular velocities, the constraint equations, namely (7) is differentiated with
respect to time, i.e.,

�oȯ + �rṙ = 0 (8)

in which, �o ≡ [∂ϕ/∂o]; �r ≡ [∂ϕ/∂r]; and ȯ and ṙ are the time derivatives of o and r,
respectively [1]. The acceleration expressions are similarly obtained by differentiating the
velocity expressions, namely (8), which is written in a compact form as

�oö + �rr̈ + (�qq̇)qq̇ = 0 (9)

where (�qq̇)q ≡ ∂(�qq̇)/∂q, and �q is an m×n matrix, in which m and n are the number of
dependent variables, or the number of constraint equations, and the total number of variables
that includes independent and dependent variables, respectively. Since q̇ is not dependent on
q explicitly, (9) can be rewritten as

�oö + �rr̈ + (�qqq̇)q̇ = 0 (10)

in which �q ≡ ∂φ
∂q and �qq ≡ ∂�q

∂q . In view of the fact that �q is a matrix, its each col-
umn is differentiated w.r.t. q and expanded in the third dimension. Therefore, �qq is m ×
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Fig. 3 Use of 3-dimensional
matrix for generalized
acceleration calculation

n × n matrix whose each element is φijk ≡ ∂2φi

∂qj ∂qk
. Such 3-dimensional matrix can be eas-

ily handled in MATLAB software environment. The computation of (�qqq̇)q̇ in (10), for a
system with m constraint equations and n variables [10] is shown in Fig. 3.

3 Equations of motion

The dynamics formulation of an n-link open-chain serial system with only one DOF joint
(Fig. 13) using the Decoupled Natural Orthogonal Complement (DeNOC) matrices [3],
which forms the basis for the modeling of the closed-loop system with h links, is outlined
in the Appendix.

The twist and wrench of the ith body moving in the 3-dimensional Cartesian space are
defined in the Appendix as the 6-dimensional vectors of

ti ≡
[

ωi

vi

]

and wi ≡
[

ni

fi

]

(11)

where ωi and vi are the 3-dimensional vectors of angular velocity and linear velocity of
point Oi of the ith body, respectively, whereas ni and fi are the 3-dimensional vectors of the
resultant moment about Oi , and the resultant force at Oi , respectively.

Now in the presence of a spherical joint, where the rotation of one body w.r.t. its previ-
ous one is defined using the Euler parameters, the corresponding twist expression similar
to (48) will be derived. The key point in (48) is that the joint-motion propagation matrix is
associated to the number of variables signifying the degree of freedom of the joint. For the
revolute and prismatic joints, p is a vector with size of 6×1. For the spherical joint, it should
then be 6×3, as a spherical joint allows 3-DOF motion of the ith link w.r.t. its previous one.
Hence, (5) cannot be used because ṗe has four variables. An alternative representation of ω
in terms of the time rates of the 3-dimensional vector e as in (1) is sought. This is suitable
for the derivation of dynamic equations of motion using the DeNOC matrices. For that, ṗe

of (5) is expressed first in terms of ė as

ṗe = Cė (12)

where C ≡ [−e/e0,1]T. Upon substitution of (12) into (5), one obtains

ω = 2GCė ≡ G∗ė (13)

Equation (13) is rewritten with appropriate subscripts to denote the relative angular velocity
of the ith body w.r.t. the (i − 1)st one in (i − 1)st moving frame as

ωi,i−1 = G∗
i ėi (14)
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in which G∗
i ≡ [Bi,i−1 + 1]/e0i , and e0i and ei are the Euler parameters representing the

orientation of the ith body w.r.t. the (i − 1)st one and Bi,i−1 is the rotation matrix that
transforms a vector from the frame connected to the ith body into the frame connected to
the (i − 1)st body. Equation (48) is then rewritten for the two bodies coupled by a spherical
joint as

ti = Ai,i−1ti−1 + Pi ėi (15)

where the expression of the 6 × 6 matrix Ai,i−1 is same as that in (49), whereas the 6 × 3
joint-motion propagation matrix is given as

Pi ≡
[

G∗
i

O

]

(16)

As pointed out in the Appendix, the generalized twist of the entire system, t, for the n rigid
bodies in the system is written in form of (50). In the presence of s spherical joints, Matrix
NL remains same as that given in (51) for a system with only one-DOF joints, while ND

changes to the 6n × (r + 3s) block diagonal matrix, where r and s represent the number of
one-DOF revolute/prismatic joints and three-DOF spherical joints, respectively. Hence, ND

is defined by

ND ≡

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

P1

P2

. . .

Pi

. . .

Pn

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(17)

where Pi is the joint-motion propagation matrix for the three-DOF spherical joints obtained
from (16), or the joint-motion propagation vector for the one-DOF revolute/prismatic joints,
pi as presented in (49), depending on the ith link connected to its previous one by a three-
DOF joint or a one-DOF joint. Accordingly, θ̇ of (47), is defined as the (r +3s)-dimensional
vector of independent generalized speeds, which contains θ̇ ’s for revolute/prismatic joints
associated to vector p in matrix ND, and ė’s for spherical joints corresponding to P elements
in matrix ND.

The rest remains same for a system with only one-DOF joints and that with one- and
three-DOF joints. So far, in deriving (53) for an open-loop serial type system, it is assumed
that all the joint variables are independent. For a closed-loop system, this is, however, not
true, i.e., all joint variables are not independent. In order to apply the dynamics modeling
methodology presented above, the closed-loop system under study is first made open by
cutting the appropriate joints and substitute the constraint forces or moments in terms of La-
grange multiplies to maintain kinematic constraints unchanged. As a result, the advantages
of the serial chain systems, namely, the development of recursive dynamics algorithms can
be exploited [7] even for the closed-loop system. This is done in the following subsection.
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(a) The topology of the closed-loop system (b) The cut joints and Lagrange multipliers

Fig. 4 Reaction forces at the cut joints

3.1 Closed-loop systems

A closed loop is converted here into some open chains, which can be spanning-trees or serial
systems, by cutting its appropriate joints. The topology of the linkage, which obtained from
graph theory and shown in Fig. 1(b) is employed to find the appropriate joints, which should
be cut. It is obvious that the number of cut must be equal to the number of independent
closed-loops. Use of concept of cumulative degree of freedom (CDOF) in graph theory
identifies the appropriate joints to be cut [16–18] as cited in [19].

The total DOF of all joints lie in an open chain, namely the branch of the tree, is called
the CDOF. Using this concept, one should cut the joints such that the maximum CDOF of all
branches is minimum. After choosing the joints being cut, links can be numbered properly.

The links of initial closed-loop system should be numbered in such a way that after
cutting the joints, the numbers of the links in each branch of opened systems are consecutive.
For example, the schematic linkage shown in Fig. 1 is cut at proper joints to obtain some
serial subsystems shown in Fig. 4. If the cuts lead to tree-structure, the method of numbering
given in [7] is suitable.

The scissors symbols of Fig. 4(a) indicate the proper joints to be cut, whereas fλij and nλ
ij

in Fig. 4(b) denote the components of the force and moment caused due to the Lagrange
multipliers representing generalized reaction forces at the cut joints.

Since the Lagrange multipliers representing the constraint forces and moments at the cut
joints, are treated as external forces and moments applied to the resulting serial subsystems,
vector we of (54) should now include the wrenches due to the Lagrange multipliers as well.
Let us replace we of (54) with we + wλ to distinguish the true external wrenches, we, from
those due to the Lagrange multipliers, wλ. For every open loop, which obtained by cutting a
closed-loop system, (53), is then modified to [7]

NT
j (Mj ṫj + Wj Mj Ej tj ) = NT

j

(
we

j + wλ
j

)
(18)

where j stands for the opened subsystems, and all the matrices and vectors are with appro-
priate dimensions. Now, the equations of motion for the whole system taking into account
all the opened subsystems can be written as

NT(Mṫ + WMEt) = NT
(
we + wλ

)
(19)

in which the associated vectors and matrices are
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M = diag[MI MII . . . MO]; W = diag[WI WII . . . WO]
NL = diag[NLI NLII . . . NLO]; ND = diag[NDI NDII . . . NDO] (20)

E = diag[EI EII . . . EO]

and

t = [
tT
I tT

II . . . tT
O

]T; we =
[
weT

I weT

II . . . weT

O

]T

wλ =
[
wλT

I wλT

II . . . wλT

O

]T
(21)

Matrices MI, MII, and MO are the generalized mass matrices, as defined in (46), for the
opened subsystems. Other matrices and vectors are similarly defined.

Next, it is shown how to obtain the reactions at the uncut joints. These may be required
for mechanical design and force/moment optimization purposes. The algorithm for the open-
loop system proposed in [21], is presented here, namely

wi−1,i = A′
i,i+1wi,i+1 + w∗

i − we
i (22)

in which

wi−1,i ≡
[

ni−1,i

fi−1,i

]

; w∗
i ≡

[
n∗

i

f∗i

]

and A′
i,i+1 ≡

[
1 ãi,i+1

O 1

]

(23)

where the moment, ni−1,i , and the force, fi−1,i , are those applied by the (i − 1)st body
to the ith one at the ith joint, and w∗

i introduces the inertia wrench of the ith body as
Mi ṫi + WiMiEiti ≡ w∗

i . In (22), the 6 × 6 matrix, A′
i,i+1, is the wrench-propagation matrix

which transforms the wrench acting at point Oi+1 to Oi of the ith body.

4 Case studies

In this section, the algorithm is applied to two examples. These are: (i) a spatial revolute-
spherical–spherical-revolute (RSSR) linkage, and (ii) a half model of suspension and steer-
ing linkage of a commercial passenger car. With the former system, i.e., the RSSR linkage, it
may be possible to show that the proposed algorithm is faster compared to the conventional
consideration of a spherical joint as three intersecting revolute joint, as done in [7].

Fig. 5 Four-bar RSSR
mechanism
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4.1 RSSR mechanism

The four-bar RSSR linkage, as shown in Fig. 5, is considered first whose links are numbered
as #1, . . . ,#4, and joints by 1, . . . ,4. This system was analyzed in [7, 9], where the spherical
joints are treated as three intersecting revolute joints. In this paper, the same methodology is
adopted except that the spherical joint motions are represented using the Euler parameters.
Correspondingly, changes are made in the derivation of the DeNOC matrices, as shown in
subsequent paragraphs.

4.1.1 Kinematic analysis

Since the DeNOC matrices themselves are function of the link orientations, their evaluation
methodology is explained as follows:

Using Kutzbach criterion [14] the degree of freedom (DOF) of the RSSR linkage is
two, of which, one is the rotation of input link, #1, denoted as ψ , and the other one is the
rotation of coupler #2 about its own axis, which is called redundant DOF because it does not
affect the input/output rotation. As depicted in Fig. 5, three Cartesian coordinate systems
are attached to #1, #2, and #3 as explained in Sect. 2. Note that the fixed reference frame
is considered at joint 4, which is attached to the fixed base and whose X-axis is along the
common perpendicular of two revolute joints, namely, joints 1 and 4, and global Z-axis is
along the axis of joint 4. Since #1 rotates about constant axis of z1, let us define B1 to denote
the transformation of x1y1z1 w.r.t. XYZ. In this rotation matrix, only ψ , the angle of #1 as
shown in Fig. 5, is variable.

Next, the rotation of frame x2y2z2 w.r.t. x1y1z1 is defined using the Euler parameters, as
#2 is connected to #1 by a spherical joint. It is represented by B21, i.e.,

B21 = (
2e2

02 − 1
)
1 + 2

(
e2eT

2 + e02ẽ2

)
(24)

where [e02 eT
2 ]T ≡ pe21 are the Euler parameters of the second moving frame, x2y2z2, w.r.t.

the first moving frame, x1y1z1.
In view of the fact that #3 rotates in the XY plane about Z axis, the rotation of x3y3z3

w.r.t. XYZ is easily written and termed B4.
Note that for the given values of the input angle, ψ , there are five unknowns, namely,

e02, three components of e2, and θ that need to be obtained to define the configurations of
all the four-bar linkage completely. The five unknowns are solved from the five constraint
equations that are expressed in the form of (7), where the scalar five equations are obtained
as follows:

• Three components of the kinematic loop closure equations being

⎡

⎢
⎢
⎣

φ1

φ2

φ3

⎤

⎥
⎥
⎦ = B1

⎡

⎢
⎢
⎣

l1

0

0

⎤

⎥
⎥
⎦ + B1B21

⎡

⎢
⎢
⎣

l2

0

0

⎤

⎥
⎥
⎦ −

⎡

⎢
⎢
⎣

l4x

l4y

l4z

⎤

⎥
⎥
⎦ − B4

⎡

⎢
⎢
⎣

l3

0

0

⎤

⎥
⎥
⎦ (25)

where [l1 0 0]T indicates point A in the first moving coordinate system, while [l2 0 0]T

and [l3 0 0]T represent point B in the second and third moving coordinate systems, re-
spectively, and the 3-dimensional vector l4 ≡ [l4x l4y l4z]T represents the position of OB

w.r.t. OA in global frame, as shown in Fig. 5.
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Fig. 6 Four-bar RSRRR
mechanism

• The constraint φ4 being dependency of the Euler parameters, (2), i.e.,

φ4 = pT
e21pe21 − 1 (26)

• The last constraint is due to the elimination of the redundant DOF in #2. As shown in
Fig. 6, the spherical joint at point B is replaced by two revolute joints. The length of the
imaginary link #3′ connecting the joints 3′ and 3′′ is taken as zero, whereas the axis of
joint 3′, z′

3, is considered parallel to the Z-axis of fixed frame, and the axis of joint 3′′,
z′′

3 , is taken orthogonal to both z′
3 and x2. Now, the z axis of the second moving frame is

defined parallel to z′′
3 . Since, x2y2z2 is parallel to x ′′

3 y ′′
3 z′′

3 , B2 should be equal to B′′
3 . In

other words, B1B21 = B3B3′3B3′′3′ or Bl = Br , where l and r stand for left and right sides
of the expression, respectively. Since in this case, Br (3,3) is equal to zero, this element
is taken as the last constraint equation. The equation is

φ5 = Bl (3,3) (27)

Referring to (7) for the linkage at hand, q ≡ [oT ψ]T is the 6-dimensional vector of gen-
eralized coordinates for the RSSR mechanism at hand, whereas o ≡ [e02 eT

2 θ ]T is the
5-dimensional vector array of dependent coordinates. The term ψ is the independent co-
ordinate for the one-DOF RSHR mechanism. To derive the generalized velocities and ac-
celeration for the RSSR mechanism whose dimensions are given in Table 1, the constraint
equations, namely (25)–(27), are differentiated with respect to (w.r.t.) time as they were pre-
sented in Sect. 2. The input, ψ , is taken as a linear function of time that varies between 0 and
2π , in t = 0.6 sec., where position analysis results are given in Fig. 7. In order to validate
the results, a separate CAD model is developed in ADAMS (Advanced Dynamic Analysis
of Mechanical System) software environment. The outputs of the ADAMS model are also
shown in Fig. 7, which indicate good agreement of the analytical results and results taken
from ADAMS.

4.1.2 Dynamics analysis

In order to obtain dynamics results using the DeNOC matrices, the RSSR linkage, shown
in Fig. 6, is first made open by cutting joint 3, located at point B. It is then substituted with
appropriate Lagrange multiplies. Due to this cut, the closed-loop system is now converted
to two open-loop systems. As it was pointed out in Sect. 4.1.1, joint 3 is treated as two
intersecting revolute joints. Hence after cutting, there will be three reaction forces, as the
scalar components of fλ23, and a reaction moment about the axis of #2, which is the only
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(a) Output angle, θ of #3, and its time derivatives

(b)The x, y, and z components of point B

(c) The x, y, and z components of angular velocity of #2

Fig. 7 Numerical and ADAMS kinematic results of the RSSR linkage analysis

component of nλ
23. The DeNOC matrices for the two open subsystems are then combined to

yield the following:

NL =

⎡

⎢⎢
⎣

1 O O

A21 1 O

O O 1

⎤

⎥⎥
⎦ ; ND =

⎡

⎢⎢
⎣

p1 O 0

0 P2 0

0 O p3

⎤

⎥⎥
⎦ (28)

where NL and ND are 18 × 18 and 18 × 5 matrices corresponding to the 18-dimensional
generalized twist, t of (47), and the 5-dimensional joint rate vector θ̇ given by θ̇ ≡ [ψ̇ ėT

2 θ̇ ]T.
Now, referring to Fig. 8 and neglecting the gravity forces, the wrench associated with

external forces for the left side, i.e., OAAB, is given by

we
l = [

weT

1 weT

2

]T
(29)

in which we
1 and we

2 are the 6-dimensional vector of external wrenches at joints 1 and 2,
respectively. The vectors we

1 and we
2 are defined as

we
1 ≡ [

(u1τ)T 0
]T

and we
2 = 0 (30)
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Fig. 8 Reaction forces at cut
joint B

where τ is the actuating torque applied to #1 at revolute joint 1 and u1 is the unit vector
along z1 of joint 1. The next term on the right-hand side of (19) is the wrench associated
with the Lagrange multipliers due to cutting of joint B, which is found for the left open chain
as

wλ
l = [

wλT

1 wλT

2

]T
(31)

in which wλ
1 and wλ

2 are the 6-dimensional wrenches associated with the Lagrange mul-
tipliers at the joints 1 and 2, respectively. Note that the Lagrange multipliers due to cut
joint 3, i.e., λ32x , λ32y , λ32z, and τ32x must be expressed with respect to the origin of
link 2, namely, point A, and in the fixed frame. Hence, they are given as wλ

1 = 0 and
wλ

2 = A′
23wλ

3 , where wλ
3 = Bw′λ

3 in which w′λ
3 is defined in the second moving frame and

is w′λ
3 ≡ [τ32x 0 0 λ32x λ32y λ32z]T, and B is the rotation matrix that converts the wrench

associated with the Lagrange multipliers of the left chain from the moving frame to fixed
frame. Thus, one can write (31) as

wλ
l = A′Bw′λ

3 (32)

where the 12 × 6 matrix A′, the 6 × 6 matrix A′
23, and the 6 × 6 matrix B are given by

A′ ≡
[

O

A′
23

]

, A′
23 ≡

[
1 ã23

O 1

]

and B =
[

B1B21 O

O B1B21

]

(33)

Now, it a simple matter to find the wrench associated with external forces for the right side
chain, i.e., OBB, as

we
r = we

3 where we
3 = 0 (34)

Moreover, the wrench associated with the Lagrange multipliers for this chain is

wλ
r = A′

43B3

(−w′λ
3

)
(35)

in which A′
43 is defined similar to A′

23. After all, the 18 × 1 vectors of we and wλ for the
whole linkage are obtained from (20) as

we = [
weT

l weT

r

]T
and wλ = [

wλT

l wλT

r

]T
(36)

Finally, all the matrices associated with dynamic equations of motion of the RSSR mecha-
nism, namely (19), are known. It is pointed here that all equations are expressed in the fixed
frame, i.e., XYZ. Hence, the inertia matrices for #1, #2, and #3 are accordingly calculated
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(a) The x, y, and z components of reaction force at joint 3

(b) Reaction torque at joint 3 (c) Driving torque at joint 1

Fig. 9 Dynamics results of the RSSR linkage

in the fixed frame. Furthermore, the joint-motion propagation matrix of spherical joint 2,
matrix P2, in global frame is as follows:

P2 ≡
[

B1B21G∗
2

O

]

(37)

From (19) and (28)–(36), it is now obvious that there are five unknown, which are τ , the
actuating torque on #1 at joint 1, τ32x , the reaction torque at joint 3, and the three reaction
forces at joint 3 denoted as λ32x , λ32y , and λ32z, in addition five dynamic equations of motion.
Hence, a unique set of solution exists, for which the results are shown in Fig. 9.

As it is expected, τ32x is always zero in Fig. 9(b) because there is no force or moment on
#2 to be applied or arising because of the kinematic constraints. The dynamics results of the
RSSR linkage obtained from the proposed algorithm are also compared with those from the
ADAMS model. They show extremely close match. To verify the efficiency of the proposed
algorithm, based on Euler parameters of a spherical joint, with that of three intersecting
revolute joints substituted for a spherical joint [7], CPU times to run the corresponding
computer codes in PIV-3.4 GHZ computer are obtained and reported in Table 1. The shorter
CPU times given in Table 1 proves the efficiency of the proposed methodology, where the
motion of a spherical joint is specified using the Euler parameters.

4.2 Suspension and steering linkage

In this subsection, the suspension and steering linkage of a commercial passenger car is
modeled as a more complicated linkage to show the generality of the proposed algorithm.
A CAD model of this linkage is shown in Fig. 10.

This linkage consists of a rack, two tie rods, two steering arms connected to wheel hubs,
two struts and two lower arms, and two springs and shock absorbers applying forces to lower
and higher parts of the struts. Figure 11(a) shows the scheme of left half of the linkage whose
topology obtained from graph theory is shown in Fig. 11(b).
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Fig. 10 CAD model of
suspension and steering linkage

(a) A scheme of the linkage (b) Topology

Fig. 11 The suspension and steering linkage

The topology shows two independent close-loops. Hence, two joints must be cut to open
the linkage completely. The highlighted numbers on the lines indicating the joints, represent
their DOF. As it is pointed out in Sect. 3, the CDOF of every branch should be minimum
after cutting.

Hence, the proper joints for cutting are the spherical joints between #1 and #3, and #3
and #5, where the maximum CDOF is four. It is a simple matter to check that by cutting
other two joints, the maximum CDOF is same as four or more. The links of the linkage
are numbered in such a way that after cutting and converting the closed loop to three serial
chains, the link numbers of every serial chain are consecutive.

Some representative results of the suspension and steering linkage analysis are shown
in Fig. 12. The figure shows the force applied to the rack to move it by a sine function
for maximum rack travel in two sec. The force applied to the tire is same as the sample
given in [22]. The details of the modeling and results are avoided here to keep the size
of paper reasonable. The modeling details of the suspension and steering linkage will be
communicated later as a separate submission.
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Fig. 12 The force applied to the rack of the suspension and steering linkage

5 Conclusions

In this work, the dynamic modeling of multibody systems with spherical joints whose mo-
tions are described using Euler parameters is presented. In general, a spherical joint is mod-
eled as three intersecting orthogonal revolute joints with zero intermediate link lengths. The
later procedure causes the increase in the sizes of the associated matrices. To avoid the un-
necessary introduction of the intermediate links and increasing the matrix dimensions, the
Euler parameters are employed to represent the motion of a link connected to the previous
one by a spherical joint. Correspondingly, the Decoupled Natural Orthogonal Complement
(DeNOC) matrices used for the development of dynamic algorithms are modified. To con-
firm the efficiency of the proposed representation, a spatial four-bar Revolute-Spherical–
Spherical-Revolute (RSSR) mechanism is analyzed and compared to that one reported in
the literature [7]. The CPU times in Table 1 show almost 10% improvement. Besides, less
computer memory is required using the proposed methodology due to the smaller matrix
sizes.

Finally, the contributions of this paper are highlighted as:

(1) Extension of the concept of the DeNOC matrices for the multibody systems with spher-
ical joints using Euler parameters to denote their motions.

(2) Verification of the efficiency of the dynamic algorithm, particularly, for the RSSR link-
age.

(3) Brief explanation of the dynamic analysis of a complex suspension and steering linkage.

Acknowledgements The authors acknowledge Dr. Himanshu Chaudhary who allowed using his code on
RSSR linkage analysis being based on three orthogonally intersecting revolute joint substitution for the com-
parison of the two algorithms.

Appendix

This appendix explains DeNOC matrices for a serial multibody system with only one-DOF
joint. Using Euler and Newton laws, equations of motion for the ith body of an open chain
can be written as (see Fig. 13)

nC
i = IC

i ω̇i + İC
i ωi = IC

i ω̇i + ω̃iIC
i ωi (38)

fCi = mi v̇C
i (39)
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Fig. 13 An n-link serial
manipulator

where ωi ,vC
i ,nC

i and fCi are 3-dimensional angular velocity, linear velocity, moment, and
force vectors, respectively, associated with the ith body and represented about Ci , and IC

i and
mi are 3-dimensional inertia matrix about Ci and mass of the body, respectively. If Newton–
Euler (NE) equations for the ith body are written about origin Oi , the terms v̇C

i ,nC
i , fCi , and

IC
i need to be substituted with v̇i ,ni , fi , and Ii , which are given as

vi = vC
i + d̃iωi; v̇i = v̇C

i + d̃iω̇i + ω̃i d̃iωi

ni = nC
i + d̃ifCi ; fi = fCi and Ii = IC

i − mi d̃2
i

(40)

where x̃ is the 3 × 3 cross-product matrix associated with the 3-dimensional vector x so that
x̃a = x × a for any vector a, and it is defined similar to (4).

On substitution of (40) in (38) and (39), one obtains the following:

(Ii + mi d̃2
i )ω̇i + ω̃i

(
Ii + mi d̃2

i

)
ωi = ni − d̃ifi (41)

mi v̇i − mi d̃iω̇i − miω̃i d̃iωi = fi (42)

Equations (41) and (42) are simplified and formed as

Mi ṫi + WiMiEiti = wi (43)

in which the 6 × 6 matrices, Mi , Wi and Ei , and the 6-dimensional vectors ti and wi are
given by

Mi ≡
[

Ii mi d̃i

−mi d̃i mi1

]

; Wi ≡
[

ω̃i O

O ω̃i

]

; Ei ≡
[

1 O

O O

]

;

ti ≡
[

ωi

vi

]

and wi ≡
[

ni

fi

] (44)

where Ii is the 3 × 3 inertia tensor for the ith body about Oi . The two last vectors, ti and wi ,
are called twist and wrench of the ith body, respectively.

For a multibody system with n rigid links, the uncoupled NE equations of motion, (43),
are then written in a compact form as

Mṫ + WMEt = w (45)

where the 6n × 6n matrices, M, W, E, and the 6n-dimensional vectors t and w are defined
as follows:

M ≡ diag[M1,M2, . . . ,Mn]; W ≡ diag[W1,W2, . . . ,Wn]
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E ≡ diag[E1,E2, . . . ,En]; t ≡ [
tT
1 tT

2 . . . tTn
]T

and (46)

w ≡ [
wT

1 wT
2 . . . wT

n

]T

The twist of the open chain can be written as [3, 6]

t = Nθ̇ (47)

In (47), N is an orthogonal complement for the coefficient matrix of velocity constraint
equations, A, so that At = 0. N is then termed as Natural Orthogonal Complement (NOC)
of A [6]. In (47), θ̇ ≡ [θ̇1 . . . θ̇n]T is the n-dimensional vector of independent generalized
speeds.

Note that the twist of the ith body, ti , can be expressed in terms of its previous body, i.e.,
the (i − 1)st one [3, 20], as

ti = Ai,i−1ti−1 + piθ̇i (48)

where Ai,i−1 is the 6 × 6 twist-propagation matrix, and pi is the 6-dimensional vector of
joint-motion propagation, which are given by

Ai,i−1 ≡
[

1 O

ãi,i−1 1

]

; pi ≡
[

ui

0

]

revolute; pi ≡
[

0

ui

]

prismatic joints

(49)
In (49), ãi,i−1 is the 3 × 3 cross-product matrix associated with the vector ai,i−1, defining
position Oi−1 from Oi . From Fig. 13, vector ai,i−1 can be obtained as ai,i−1 ≡ −ai−1 =
−di−1 − ri−1. Matrix ãi,i−1 is defined similar to (4). Moreover, O and 1 are the 3×3 zero
and identity matrices, respectively, whereas, 0 is the 3-dimensional vector of zeros. In this
paper, O, 1, and 0 will be understood as of compatible sizes based on where they appear.
Furthermore, ui is the 3-dimensional unit vector parallel to the ith joint axis.

The NOC matrix given in (47), N, is decomposed next as

N ≡ NLND (50)

Matrices NL and ND are the 6n×6n lower block triangular matrix, and the 6n×n block diag-
onal matrix, respectively. They are found for a chain with only one-DOF revolute/prismatic
joints as

NL =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

1 O · · · O

A21 1 · · · O

...
...

. . .
...

An1 An2 · · · 1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

and ND =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

p1 0 · · · 0

0 p2 · · · 0

...
...

. . .
...

0 0 · · · pn

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

(51)

For serially connected three bodies, namely, i, j , and k, the twist propagation matrices sat-
isfy the following properties:

Aij Ajk = Aik; Aii = 1; A−1
ij = Aj i (52)

Since in (45), the wrench w, includes all the forces and moments applied on the system, i.e.,
the external forces and moments, the reaction forces and moments, and those due to gravity,
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dissipation, etc., it can be substituted as w ≡ we + wc, where wc contains the reactions and
we contains the rest.

It is well known that the work done by reaction forces is zero, then

tTwc = θ̇
T
NTwc = 0 (53)

Since θ̇ is the vector of independent coordinates, NTwc = 0, meaning that if both sides
of (45) are premultiplied by NT, i.e., the transpose of the matrix N, the wrench due to reaction
forces and moments are vanished, and (45) yields to

NT(Mṫ + WMEt) = NTwe (54)

Equation (54) is termed as coupled equations of motion for an open-loop serial type system
whose all joint variables are assumed to be independent.
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