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Abstract

This paper presents a new generic optimization technique for the balancing of the shaking force and shaking moment
due to inertia forces in spatial mechanisms. For given dimensions and input speed of a mechanism, the inertia forces
depend only upon the mass distribution of the moving links. The equimomental system of seven point-masses is introduced
to represent the inertial properties of the links and to identify optimizing variables. The effectiveness of the proposed meth-
odology is illustrated using a spatial RSSR mechanism.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Balancing of shaking force and shaking moment in high speed mechanisms/machines reduces the forces
transmitted to the frame. In effect, this minimizes the noise and wear, and improves the performance of a
mechanism. The balancing of shaking force has been studied by various researchers [1–15], and others. A con-
siderable amount of research on balancing of shaking force and shaking moment in planar mechanisms has
been carried out in the past [1–5]. In contrast to rapid progress in balancing theory and techniques for planar
mechanisms, the understanding of shaking force and shaking moment balancing of spatial mechanisms is very
limited. Kaufman and Sandor [6] presented a complete force balancing of spatial mechanisms like (revolute–
spherical–spherical–revolute) RSSR and (revolute–spherical–spherical–prismatic) RSSP. Their approaches are
based on the generalization of the planar balancing theory developed by Berkof and Lowen [5], a technique of
linearly independent vectors. Using the real vectors and the concept of retaining the stationary centre of total
mass, Bagci [7] has obtained the design equations for force balancing of various mechanisms, whereas Ning-
Xin Chen [8,9] extended the concept of linearly independent vectors to single loop spatial n-bar linkages with
some restricted kinematic pairs for the derivation of the equations of complete shaking force balancing. In
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addition to the balancing of shaking force, shaking moment balancing can be achieved by adding the dyads
[10,11] and rotating mass balancers [12]. However, these balancing methods use counterweights and/or dyads
that are restricted to few specific mechanisms only.

Shaking force balancing of a mechanism does not imply that the shaking moment is also balanced. In fact,
shaking force balancing increases unbalancing of shaking moment and other dynamic quantities. Hence, bal-
ancing a mechanism requires a trade-off between the shaking force, shaking moment, and other quantities, say
the input torque. Although combined balancing of the shaking force and shaking moment is more useful but it
is difficult one. Simultaneous minimization of shaking force, shaking moment, and other quantities using the
dynamical equivalent system of point-masses and optimum mass distribution has been attempted in [13,14].
However, the results do not show significant improvement in the performances. Moreover, the techniques like
genetic algorithm etc. were also applied to the optimum balancing of shaking force and shaking moment for
the spatial RSSR mechanism [15]. Note that the concept of equimomental system of point-masses [16–18] and
its effective use in the spatial mechanism balancing have not been reported so far, which may be attributed to
the formulation difficulty of dynamic equations of motion, and the nonlinear nature of the equimomental
conditions.

In this paper, balancing of spatial mechanisms based on the concept of equimomental systems of point-
masses is proposed. The balancing problem is formulated as an optimization problem. The dynamic equations
of motion of mechanism are formulated in such a way that they can be converted easily to a set of those that
corresponds to the equimomental point-masses. A set of seven point-masses to represent rigid link is proposed
here to convert the nonlinear equimomental conditions into the linear ones. The design variables and corre-
sponding constraints are identified from the parameters of equimomental point-masses. The solution to the
optimization problem then redistributes the link masses so that the combined shaking force and shaking
moment is minimum value. The proposed methodology is illustrated with a spatial RSSR mechanism.

This paper is organized as follows. Section 2 explains the concept of equimomental system for a rigid link
moving in the three-dimensional cartesian space. Optimization problem is then formulated in Section 3 for the
mechanism balancing. Using the spatial RSSR mechanism, the effectiveness of the methodology is illustrated
in Section 4. Finally, conclusions are given in Section 5.

2. Equimomental system

In this section, it is shown how to represent a rigid body as an equimomental system of a set of point
masses. A point mass is defined as a mass concentrates at a point. A rigid body and a system of point masses
are said to be dynamically equivalent or more specifically equimomental if they have same total mass, the same
centre of mass, and the same inertia with respect to the same coordinate frame [16].

Let us consider a three-dimensional rigid body, Fig. 1, of total mass m, position of the mass centre ð�x; �y;�zÞ,
the moments of inertia Ixx; Iyy ; Izz, and the products of inertia Ixy ; Iyz; Izx referred to a body fixed frame OXYZ.

Let there be n point-masses, mi, which are rigidly fixed to the frame at positions ðxi; yi; ziÞ, for i ¼ 1; . . . ; n.
The system of n point-masses will be dynamically equivalent to the rigid body if the following conditions are
satisfied:

m1

mn

Y

X

O
mi

C ),,( zyx

m

Rigid
body

),( iii zy,x
ith point-mass

Z

Fig. 1. Dynamic equivalence of n point-masses for a rigid body.
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Xn

i¼1

mi ¼ m ð1Þ

Xn

i¼1

mixi ¼ m�x;
Xn

i¼1

miyi ¼ m�y;
Xn

i¼1

mizi ¼ m�z ð2Þ–ð4Þ

Xn

i¼1

mixiyi ¼ Ixy ;
Xn

i¼1

miyizi ¼ Iyz;
Xn

i¼1

mizixi ¼ Izx ð5Þ–ð7Þ

Xn

i¼1

miðy2
i þ z2

i Þ ¼ Ixx;
Xn

i¼1

miðz2
i þ x2

i Þ ¼ Iyy ;
Xn

i¼1

miðx2
i þ y2

i Þ ¼ I zz ð8Þ–ð10Þ

Eq. (1) ensures that the total mass of the equimomental points is equal to the mass of the body. Eqs. (2)–(4)
satisfy conditions of the mass centre location, whereas Eqs. (5)–(10) ensure the same inertia tensor for the
equivalent point mass system and the original rigid body about point O. Since each point-mass is identified
with four parameters, namely, mi, xi, yi, zi, the set of n point-masses requires 4n parameters to describe them
completely. These parameters, however, must satisfy ten conditions given by Eqs. (1)–(10). Hence, the smallest
positive integer n that will provide to satisfy the ten constraints is 4n P 10, i.e., 3. Note that the three points
determine a plane. As a result, they are not sufficient to describe a rigid body motion in space, and a minimum
of four point-masses are required to determine the equimomental system of point-masses, as also reported in
[17].

Note that Eqs. (2)–(10), are 2nd and 3rd order polynomials in mi, xi, yi, and zi. In case coordinates xi, yi, zi,
are specified for all the n point-masses, the equations are turn out to be linear in unknown, mi. However, the
number of unknowns is less than the number of equations, Eqs. (1)–(10), for n < 10 and vice-versa. Eqs. (1)–
(10) have infinite solution. Hence, linearization of the equimomental conditions is done using the special form
of the moment of inertia conditions, Eqs. (8)–(10). If one chooses the absolute values of the coordinates, xi, yi,
and zi as hx, hy, and hz, respectively, for all the n points, then from Eqs. (8)–(10)

h2
x ¼
�Ixx þ Iyy þ Izz

2m
; h2

y ¼
Ixx � Iyy þ Izz

2m
; h2

x ¼
Ixx þ Iyy � I zz

2m
ð11Þ–ð13Þ

where Eq. (1) is used to obtain Eqs. (11)–(13). The moments of inertia, Ixx, Iyy, and Izz, are such that the sum
of any two of them is always greater than the third one [16], which implies that

ð�Ixx þ Iyy þ IzzÞ > 0; ðIxx � Iyy þ IzzÞ > 0; and ðIxx þ Iyy � IzzÞ > 0 ð14Þ

Therefore, hx, hy, and hz never have imaginary values. Knowing the coordinates of point-masses, the remain-
ing unknown masses, namely, m1; . . . ;mn, can be solved uniquely from the remaining seven linear algebraic
equality, Eqs. (1)–(7), if n = 7. Hence, such a set of seven point-masses is the suitable to represent a rigid body,
as the number of unknowns is equal to the number of equations. Moreover, to avoid the coincidence of two or
more points, they must be placed at unique locations. This is only possible if all the points have unique coor-
dinates. Since the positive and negative values of hx, hy, and hz represent Cartesian coordinates of the point-
masses, they form a rectangular parallelepiped whose centre is at origin point O, and the sides are 2hx, 2hy and
2hz, as shown in Fig. 2.

On substitution of the coordinates of the seven point-masses, the dynamically equivalent conditions, Eqs.
(1)–(7), can be written in the compact form as

Km ¼ b ð15Þ

where the 7-vectors, m and b, and the 7 · 7 matrix, K, are defined as
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m � ½m1 m2 m3 m4 m5 m6 m7 �T ð16Þ

b � m
m�x
hx

m�y
hy

m�z
hz

Ixy

hxhy

Iyz

hyhz

Izx

hzhx

� �T

ð17Þ

K �

1 1 1 1 1 1 1

1 1 �1 �1 �1 1 1

1 1 1 1 �1 �1 �1

1 �1 �1 1 1 1 �1

1 1 �1 �1 1 �1 �1

1 �1 �1 1 �1 �1 1

1 �1 1 �1 �1 1 �1

2
666666666664

3
777777777775

ð18Þ

The vector of unknowns, m, is then easily solved as

m ¼ K�1b ð19Þ

where K�1 is given by

K�1 �

0:25 0 0 0 0:25 0:25 0:25

0 0:25 0:25 0 0 �0:25 �0:25

0:25 �0:25 0 �0:25 0 0 0:25

0 0 0:25 0:25 �0:25 0 �0:25

0:25 �0:25 �0:25 �0 0:25 0 0

0 0:25 0 0:25 �0:25 �0:25 0

0:25 0 �0:25 �0:25 0 0:25 0

2
666666666664

3
777777777775

ð20Þ

Now, if the origin of the frame, O, coincides with the mass centre, C, and the axes of the frame are along the
principal axes, i.e., �x ¼ �y ¼ �z ¼ 0 and Ixy ¼ Iyz ¼ I zx ¼ 0, it is evident from Eq. (19) that
m1 ¼ m3 ¼ m5 ¼ m7 ¼ 0:25m, and m2 ¼ m4 ¼ m6 ¼ 0, irrespective of the values of hx, hy and hz. Therefore,
the four point masses, m1, m3, m5, and m7, with equal masses are found. These point-masses form a tetrahe-
dron, and each point lies at the vertex of the tetrahedron shown in Fig. 2. This tetrahedron may be regarded as

inscribed within a sphere whose radius is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y þ h2

z

q
. These results conform to those reported by Routh

[16], i.e., ‘‘Four particles of equal mass can always be found which are equimomental to any given solid body’’.
However, no proof or justification was provided in [16], which is reported here for the first time. Also it is
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Fig. 2. Equimomental system of seven point-masses for a rigid body.
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confirmed with [18] that the equimomental system of point-masses of a rigid body form a tetrahedron with
four equal point-masses.

3. Formulation of the balancing problem

As pointed out in Section 1, the balancing problem is to find mass, location of the mass centre, and inertia
of each link of a mechanism whose dimensions and input motion are given so that shaking forces transmitted
to the frame are minimum. The problem is treated as an optimization problem, which is formulated in this
section. To do so, first the Newton–Euler (NE) equations of motion are derived in the parameters, identified
as the design variables, of the point-masses.

3.1. Coordinate systems

In order to specify the configuration of a spatial mechanism, body-fixed coordinate frames are defined as
shown in Fig. 3. It is assumed that each link is coupled to its previous and the next one with one degree-of-
freedom (dof) joints. The ith joint couples the (i � 1)st link with the ith one. With each link, namely, the
(i � 1)st one, a Cartesian coordinate system, OiX iY iZi, denoted by Fi, is attached at Oi. The dimensions
and configuration of the linkage are then determined by set of parameters, referred as Denavit–Hartenberg
(DH) parameters [20,30], ai, bi, ai, and hi, as shown in Fig. 3. Correspondingly, the transformations of vectors
and matrices between the frames Fiþ1 and Fi can be easily obtained. In this paper, representation of vectors
and matrices in a frame, say, F, is denoted with [.]f, where ‘.’ is the vector or the matrix.

3.2. Dynamic equations of motion

Referring to the ith link of a spatial mechanism, Fig. 4, Oi and Oiþ1 are the origins of the coordinate frames,
OiX iY iZi ðFiÞ and Oiþ1X iþ1Y iþ1Ziþ1 ðFiþ1Þ, respectively, where the frame, Fiþ1, is fixed to the ith link. To
express the rigid body kinematics and dynamics, two 6-vectors twist and wrench, which are analogous to
the velocity and force of a particle, of the ith body are defined as

ti �
xi

vi

� �
and wi �

ni

f i

� �
ð21Þ

where 3-vectors xi and vi are the angular velocity of the ith body and the linear velocity of point Oi on the
body, respectively. Accordingly, 3-vectors ni and f i are the resultant moment including those due to reaction

Oi+1

Oi

θi

ai

bi

Xi+1

Zi+1

Zi

Zi-1

i

αi

iO′ ’
i

mimi-1

ri

ri-1 

Yi

Yi+1

Link i-1

Link i
di

ai,i+1

Joint i

Joint i+1

Joint i-1

Fig. 3. Coordinate frames and associated parameters.
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forces on the body about Oi, and the resultant force at Oi, respectively. Now the Newton–Euler (NE) equa-
tions of motion [22] are expressed as

Mi_ti þWiMiEiti ¼ wi ð22Þ

where the 6 · 6 matrices Mi, Wi and Ei are the mass, angular velocity, and coupling matrix, respectively, and
defined as

Mi �
Ii mi

~di

�mi
~di mi1

" #
; Wi �

~xi O

O ~xi

� �
; and Ei �

1 O

O O

� �
ð23Þ

In which Ii is the inertia tensor about Oi. ~di and ~xi are the 3 · 3 skew symmetric matrices corresponding to
vectors di and xi, respectively, i.e., ~dix ¼ di � x, and ~xix ¼ xi � x for the 3-vector, x. Moreover, 1 and O

are the 3 · 3 identity and zero matrices. In order to represent the mass matrix, Mi of Eq. (23), in terms of
the parameters of point-masses, the ith rigid link is modelled as seven equimomental point-mass system as pre-
sented in Section 2. Referring to Fig. 4, the point-masses are placed at the corners of a rectangular parallel-
epiped whose centre is point Oiþ1, and the sides are 2hix; 2hix; 2hiz along the axes, X iþ1; Y iþ1 and Ziþ1,
respectively. The point-masses, mi1; . . . ;mi7, are fixed in the local frame, Oiþ1X iþ1Y iþ1Ziþ1, that is attached
to the ith body. The 3-vectors, dij and rij, are defined from the origins Oi and Oiþ1 to the point-mass, mij,
respectively. Subscripts i and j denote ith link and jth point-mass. The components of the vectors, rij, in the
body fixed frame, Oiþ1X iþ1Y iþ1Ziþ1, are then given in Table 1.

Now, using the equimomental conditions, Eqs. (2)–(4), one can express vector di in terms of dij’s represent-
ing the positions of point masses from Oi, i.e.,

di ¼
1

mi

X7

j¼1

mijdij ð24Þ

where dij � ai;iþ1 þ rij, and the mass of the body is

mi ¼
X7

j¼1

mij ð25Þ

mi5

Oi+1

mi4

mi3

mi1

mi7
Xi+1

mi2

Oi

di

ai,i+1

di1

mi ri

mi6

Yi+1

Zi+1

ri1

Fig. 4. Equimomental point-masses and their locations for ith link.

Table 1
Components of vectors rij in the (i + 1)st frame

½ri1�iþ1 ½ri2�iþ1 ½ri3�iþ1 ½ri4�iþ1 ½ri5�iþ1 ½ri6�iþ1 ½ri7�iþ1

Along X iþ1 hix hix �hix �hix �hix hix hix

Along Y iþ1 hiy hiy hiy hiy �hiy �hiy �hiy

Along Ziþ1 hiz �hiz �hiz hiz hiz hiz �hiz
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Denoting dij � ½dijx; dijy ; dijz�T and using Eqs. (5)–(10), the inertia tensor, Ii, about the origin, Oi, as in Eq. (23),
in terms of the point mass parameters has following representation:

Ii ¼

P7
j¼1

mijðd2
ijy þ d2

ijzÞ �
P7
j¼1

mijdijxdijy �
P7
j¼1

mijdijxdijz

P7
j¼1

mijðd2
ijz þ d2

ijxÞ �
P7
j¼1

mijdijydijz

Sym
P7
j¼1

mijðd2
ijx þ d2

ijyÞ

2
666666664

3
777777775

ð26Þ

Eqs. (24)–(26) define the mass matrix, Mi, of the ith link in terms of the parameters of equimomental seven
point masses. Now, to compute the joint reactions and driving torques/forces the dynamic equations for
the whole system can be derived as proposed in [22,29] and others [19,21]. Knowing the joint reactions and
the driving torques/forces the shaking force and shaking moment are determined in the next section.

3.3. Shaking force and shaking moment

Shaking force is defined as the reaction of the resultant inertia forces, whereas shaking moment about any
particular point is the reactions of the resultant inertia couples and the moment of the inertia forces about that
point [23]. Using these definitions, the shaking force and shaking moment with respect to O1 in a mechanism
having n moving links are obtained as

fsh ¼ �
Xn

i¼1

f�i ; and nsh ¼ �
Xn

i¼1

ðn�i þ ~a1;if
�
i Þ ð27Þ

where f�i and n�i are 3-vectors of inertia force and inertia moment of the ith body acting at and about origin Oi,
respectively, and are the vector components of w�i similar to definition of Eq. (21). The 3 · 3 matrix ~a1;i is the
skew symmetric matrix corresponding to the 3-vector, a1;i, pointing Oi from O1. The point O1 is the origin of
the frame X 1Y 1Z1 attached to the fixed link. It is evident from Eq. (27) that the shaking moment is pure torque
for fully force balanced mechanism. Referring to Fig. 5, the equilibrium of forces and moments are expressed
as

f�i ¼ fE
i þ f i�1;i � f i;iþ1 ð28Þ

n�i ¼ nE
i þ ni�1;i � ni;iþ1 þ ~ai;iþ1f i;iþ1 ð29Þ

i

Ci

Y1

,ii-1f

O1 X1

i,1a

Oi

- 1+i,in

- 1+i,if

*
if *

in

E
in

E
if

Oi+1

ii ,1−n

Z1

Fig. 5. Free body diagram of the ith link.
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where 3-vectors, f i�1;i; ni�1;i, and f i;iþ1; ni;iþ1, are the constraint forces and moments at joints, Oi and Oiþ1,
respectively, whereas 3-vectors, fE

i and nE
i , are external force and torque acting on the ith body at and about

Oi, respectively.
Let us assume that links, k ¼ 1; . . . ; p, are connected to the fixed link (n + 1). Using Eqs. (28)–(29), the

shaking force and shaking moment expressions, Eq. (27), are then rewritten as

fsh ¼ �
Xp

k¼1

fnþ1;k �
Xn

i¼1

fE
i ð30Þ

nsh ¼ �
Xp

k¼1

ðnnþ1;k þ ~a1;jfnþ1;kÞ �
Xn

i¼1

ðnE
i þ ~a1;if

E
i Þ ð31Þ

where fnþ1;k represents the reaction force of the fixed link, (n + 1), on the kth link connected to it. For all the
other links (p < i 6 n) that are not connected to the fixed one, the term fnþ1;k vanishes.

3.4. Optimization problem

In this section, two optimization techniques are developed to reduce shaking force and shaking moment: (1)
redistribution of the mass of moving links and (2) counterweighting the moving links.

3.4.1. Mass redistribution method
The shaking force and shaking moment are the resultant of the inertia forces and moments of moving links.

When the dimensions and the input speed of a mechanism are given, the inertia forces depend only upon the
mass distribution of the moving links. Hence, mass redistribution is the obvious choice to balance mecha-
nisms. First the inertial properties of the links are represented using the seven point-mass model. The seven
point masses of each link, mi1; . . . ;mi7, which are located at the corners of a rectangular parallelepiped of sides,
2hix; 2hix, and 2hiz as explained in Section 2, are taken as the design variables. The values of hix; hix, and hiz are
calculated from the moments of inertia of each original link using Eqs. (11)–(13). For a mechanism having n

moving links, a 7n-vector of the design variables, x, is then defined as

x � ½mT
1 ; . . . ;mT

n �
T ð32Þ

where the 7-vectors mi is defined similar to m in Eq. (16) as

mi � ½mi1 mi2 mi3 mi4 mi5 mi6 mi7 �T

There are many possible criteria by which the shaking force and shaking moment transmitted to the fixed
link of the mechanism can be minimized. For example, one criterion could be the root mean squares (RMS) of
shaking force, shaking moment, and required input-torque for a given motion, and/or combination of these.
Besides RMS values, there are other ways to specify the dynamic quantities, namely, by maximum values, or
by the amplitude of the specified harmonics, or by the amplitudes at certain point during the motion cycle. The
choice of course depends on the requirements. Here, the RMS value is preferred over others as it gives equal
emphasis on the results of every time instances of the cycle and every harmonic component. The RMS values
of the normalized shaking force, �f sh, and the normalized shaking moment, �nsh, at p discrete positions of the
mechanism are defined as

~f sh �
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�f 2

sh

q
and ~nsh �

1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�n2

sh

q
ð33Þ

where ~f sh and ~nsh are the RMS values of the normalized shaking force and the normalized shaking moment,
respectively. Now, optimality criteria can be defined as the weighted sum of the competing dynamic quantities,
namely, shaking force, shaking moment, input torque, and the reactions due to the frame of mechanism. How-
ever, it is obvious from Eqs. (30)–(31) that the shaking force and shaking moment include the frame reactions
and the input torque, respectively. Hence, it is sufficient to form optimality criteria as weighted sum of the
shaking force and shaking moment. Taking the root mean square (RMS) values of the normalized shaking
force, �f sh, and the normalized shaking moment, �nsh, an optimality criterion is proposed next as
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z ¼ w1
~f sh þ w2~nsh ð34Þ

where w1 and w2 are the weighting factors whose values may vary depending on an application and ~f sh and ~nsh

are the RMS values of the shaking force and shaking moment. Considering the lower and upper limits on the
link masses and their mass centre locations, the problem of mechanism balancing is finally stated as

Minimize
w:r:t:x

zðxÞ ¼ w1
~f sh þ w2~nsh ð35aÞ

Subject to mi;min 6

X7

j¼1

mij 6 mi;max ð35bÞ

ri;min 6 ri 6 ri;max ð35cÞ

for i ¼ 1; . . . ; n, whereas mi;min and mi;max, and ri;min and ri;max are the minimum and maximum limits on the
mass and its mass centre location of the ith link. Note here that the minimum moments of inertia of the
ith link are only depend on the mi;min. For example, I ixx;min with respect to Oi in the link-fixed frame is given
by

I ixx;min ¼
X7

j¼1

mijðd2
ijy þ d2

ijzÞ ¼ mi;min½ðai;iþ1y þ rijyÞ2 þ ðai;iþ1z þ rijzÞ2� ð36Þ

where rijx; rijy ; rijz are components of the 3-vector rij given in Table 1. Moreover, ai;iþ1x; ai;iþ1y ; ai;iþ1z are the
components of the link length vector, ai;iþ1. Therefore, the moments of inertia of the links are governed by
the bound chosen on the link masses, as rij and ai;iþ1 are constants in the local coordinate frame. Hence,
the optimization problem finds a value of each point mass of each link while the total mass and its mass centre
location of each link are subjected to lower and upper limits. From the optimized values of point-masses m�ij,
optimized total mass m�i , location of the mass centre ð�x�i ; �y�i ;�z�i Þ, and inertia I�i;xx; I

�
i;yy ; I

�
i;zz; I

�
i;xy ; I

�
i;yz; I

�
i;zx of each

link are determined using the equimomental conditions, Eqs. (1)–(10).

3.4.2. Counterweight method

When the given unbalanced mechanism has been kinematically synthesized, and the mass distribution of
the links has been determined according to load bearing capacity, etc. the mechanism can be balanced by
attaching counterweights to the moving links. Assume that the counterweight mass, mb

i , is attached to the
ith link at ð�xb

i ; �y
b
i ;�z

b
i Þ, as shown in Fig. 5. The equimomental system of the resulting link is shown in Fig. 6,

where it is assumed that point-masses, mb
ij, are placed at the same locations where the point-masses of the ori-

ginal link, mo
ij were located. Then the mass of the counterweight mb

i , its mass centre location rb
i , and its inertias

Ib
i;xx; I

b
i;yyIb

i;zz; I
b
i;xy ; I

b
i;yz, and Ib

i;zx can be obtained using the equimomental conditions, Eqs. (1)–(10). Now, for a
mechanism having n moving links, the 7n-vector of the design variables, xb, is

xb � ½mbT

1 ; . . . ;mb
n

T�T ð37Þ
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Fig. 6. The ith link with counterweight.
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where the 7-vectors, mb
i , is as follows:

mb
i � ½mb

i1 mb
i2 mb

i3 mb
i4 mb

i5 mb
i6 mb

i7 �
T

Considering the lower and upper limits on the counterweight masses and their mass centre locations the bal-
ancing problem is stated similar to Eq. (35) as

Minimize
w:r:t:xb

zðxbÞ ¼ w1
~f sh þ w2~nsh ð38aÞ

Subject to mb
i;min 6

X7

j¼1

mb
ij 6 mb

i;max ð38bÞ

rb
i;min 6 rb

i 6 rb
i;maxÞ ð38cÞ

for i ¼ 1; . . . ; n and j ¼ 1; . . . ; 7 (see Fig. 7).

4. Application to the RSSR mechanism

The RSSR mechanism, Fig. 8, is kinematically equivalent to the R (RRR) (RR) R mechanism [24] as shown
in Fig. 9. The (RR) and (RRR) joint arrangements represent two and three mutually orthogonal axes of the
revolute pairs intersecting at a point, respectively. It is fact that rotation of coupler link about its axis is redun-
dant dof and does not affect the overall motion of the mechanism. The redundant dof is removed in 7R mech-
anism. The 7R mechanism has one degree of freedom and the joint 7 is assumed be driven by an actuator.

The links in Fig. 9 are numbered consecutively as 1; . . . ; 7;�7 being the fixed link. The joints are
also numbered so that joint i connects link i and i + 1. The DH notations defined in Section 3.1 are now

Oi+1

b
i

o
i mm 11 +

Xi+1

Oi

ai,i+1

ri1

di1

mi

Yi+1

Zi+1

b
i

o
i mm 22 +

b
i

o
i mm 77 +

b
i

o
i mm 66 +

b
i

o
i mm 33 +

b
i

o
i mm 44 +

b
i

o
i mm 55 +

Fig. 7. The equimomental system of point-masses for the counterweighted ith link.

a3

a6

a1
1

3

6

SS

R

R

Fig. 8. The RSSR mechanism.
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used to define the architecture of the 7R mechanism which is kinematically equivalent to the RSSR
mechanism if

a2 ¼ a4 ¼ a5 ¼ 0; b2 ¼ b3 ¼ b4 ¼ b5 ¼ b6 ¼ 0; a2 ¼ a4 ¼ a5 ¼ 0 ð39Þ

The 3-vectors, ai;iþ1, as shown in Fig. 3, is then given by

ai;iþ1 ¼ biei þ aixiþ1 ð40Þ

where ei and xiþ1 are the unit 3-vectors along the axes Zi and X iþ1, respectively. The unit vectors have simple
form in ith and (i+1)st coordinate frame, namely, ½ei�i ¼ ½0; 0; 1�

T and ½xiþ1�iþ1 ¼ ½1; 0; 0�
T. The closed-loop

mechanism is now made open by cutting the joint 6. The cutting line is indicated in Figs. 9 and 11 by dashed
line along the axis of joint 6. The resulting two open subsystems: subsystem I with one moving link 6, and
subsystem II with five serially connected moving links, 1; . . . ; 5. Both the subsystems connected to the fixed
link 7.

The loop-closure constraints are taken into account through appropriate Lagrange multipliers. Since the
cut-joint, 6, is a revolute joint there are five Lagrange multipliers, three corresponding to the reaction forces
and two to the reaction moments. Denoting the Lagrange multipliers k1; . . . ; k5, the reactions force, f65, and
the reaction moment, n65, at the cut joint are given by

½f65�6 ¼ ½ k1 k2 k3�T and ½n65�6 ¼ ½ k5 k6 0�T ð41Þ

The subsystem II has 5 unknowns, namely, k1; . . . ; k5, which is equal to its dof. It implies that the five con-
strained equations [29] of the subsystem contain the five unknown multipliers. Therefore, the system of equa-
tions can be solved for the unknowns without considering subsystem I. This is the reason why the closed-loop
is cut at joint 6 to make it open, Fig. 10. The reaction forces at the other joints, 1, . . . , 5, can then be calculated
recursively using the methodology proposed in [22]. Knowing the vector of Lagrange multipliers, k, six un-
knowns of subsystem I, i.e., driving torque at joint 7, and three components of the reaction force, f76, and
two components of the reaction moment, n76, can be solved easily. Note that the Z-component of n76 in frame
O7X 7Y 7Z7 is nothing but the driving torque.

Having obtained the reactions at all the joints, the shaking force, and shaking moment about the mid-point
of O1O7 on the fixed link are obtained using Eqs. (30) and (31) as

fsh ¼ �ðf71 þ f76Þ ð42Þ
nsh ¼ �ðn71 þ n76 þ 0:5~a17f76 � 0:5~a17f71Þ ð43Þ
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Fig. 9. The R (RRR) (RR) R mechanism.
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Since only the links 1, 3, and 6, are having some dimensions with some masses, their equimomental systems of
point-masses are brought in the optimization process. Hence, the 21-vector of the design variables is

x � ½mT
1 ;m

T
3 ;m

T
6 �

T for mass redistribution method

xb � ½mbT

1 ;m
bT

3 ;m
bT

6 �
T for counterweight method

Moreover, it is essential to position the mass centre of link 3 along O3O4 or X 4 so as to vanish the gyroscopic
action on the mechanism [7], which is also taken into account as one of the constraints. The optimization
problem is then posed as

Minimize z ¼ w1
~f sh þ w2~nsh ð44aÞ

For mass redistribution

Subject to �mo
i 6

X7

j¼1

�mij 6 5�mo
i ; ri 6 ai ð44bÞ

X7

j¼1

m3j½r3jy �4 ¼ 0; and
X7

j¼1

m3j½r3jz�4 ¼ 0 ð44cÞ

For counterweight

Subject to 0 6
X7

j¼1

mb
ij 6 3mo

i ; 0 6 rb
i 6 ai ð44dÞ

X7

j¼1

ðmo
3j þ mb

3jÞ½r3jx�4 ¼ 0;
X7

j¼1

ðmo
3j þ mb

3jÞ½r3jy �4 ¼ 0 ð44eÞ

for i = 1, 3, 6, where ai is length of the ith link. Moreover ½r3j�4 � ½ r3jx r3jy r3jz �T is the vector from O4 to the
point-mass, m3j, expressed in frame F4, which is fixed to link 3. The two equality conditions of Eqs. (44c) and
(44e), guarantee the location of the mass centre of link 3 along the axis, X 4, of the local frame, i.e., F4. Note
here that the limits on the link masses and their mass centre locations are to be chosen by the designer. The
optimization toolbox of MATLAB [25] is used to solve the optimization problem of Eq. (44). Using, ‘‘fmin-
con’’ function, which based on the Sequential Quadratic Programming (SQP) method [26], finds a minimum of
the function z. The whole algorithm is coded in the MATLAB environment to determine the time dependent
behaviour of the various relevant quantities. The ‘fmincon’ function of MATLAB is used which finds local
minimum value of an objective function. Hence, the solution depends on the initial design vector taken to start
the optimization process. The global solution is searched in the feasible space defined by the constraints, Eqs.
(44b-c) or (44d-e), using different initial design vectors.
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O3

O4

O5

O6

O7

65f

65n

- 65f

- 65n

Subsystem I

Subsystem II

1

2

3

45

6

Dimensionless links 

7

Fig. 10. Open system of the 7R mechanism.
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4.1. Numerical solution

Since the shaking force, shaking moment, bearing reactions, and parameters like the point masses and their
distances from the origin of frame where they are attached have different units and magnitudes. In order to
make them dimensionless, they are normalized as:
aij ¼: aij=am, normalized distance between joints i and j,
ri ¼: ri=am, normalized distance of the mass centre,
mi ¼: mi=mo

m, normalized mass of the ith link,
Ii ¼: Ii=ðmo

ma2
mÞ, normalized moment of inertia of the ith link,

�f ¼: f =ðmo
mamx2

inÞ, normalized magnitude of force f,
�n ¼: n=ðmo

ma2
mx2

inÞ, normalized magnitude of moment/torque n,

where am and mo
m are the link length and original mass of reference link, m, about which the mechanism is

normalized. Moreover, the scalar xin is the input angular speed.
Table 2 shows the DH parameters, mass and inertia of the normalized 7R mechanism. The mass centre

location and the elements of the inertia tensor of each link are given in their local frames. The equimomental
point masses and their locations are obtained using Eqs. (11)–(13) and (19) and are given in Table 3. The
results of the optimization problem, Eq. (44), are obtained for three sets of weighting factors, namely,
ðw1;w2Þ ¼ ð1:0; 0:0Þ; ð0:5; 0:5Þ; ð0:0; 1:0Þ. Cases (1)–(3) corresponding to mass redistribution, whereas cases
(4)–(6) represent counterweight balancing. Table 4 shows the optimum design vectors for all the cases. The
geometry, mass and inertias for the normalized balanced mechanism corresponding to the cases are obtained
using equimomental conditions and given in Table 5. Note that the conditions, Eqs. (44c) and (44e), are
achieved and shown by bold-face number in Table 5. The results of case (1), which is shaking force balancing,
is compared with the analytical conditions of Bagci [7]. The conditions are satisfied while the numerical values
of Table 5 are used. Table 6 shows comparison to the RMS values of the normalized dynamic quantities
occurring during motion cycle with those of the original mechanism, whereas Fig. 11 shows a comparison
of the dynamic performances of the mechanism. It is obvious from Table 6 and Fig. 11 that a significant
improvement in performances is achieved.

The following conclusions are accrued by comparison of the results given Tables 5 and 6.

• Total mass of the balanced mechanism is minimum when equal weights are applied to the shaking force and
shaking moment, i.e., 3.199 for case (2) and 2.991 for case (5), for the mass redistribution and counter-
weight balancing, respectively.

Table 2
DH parameters, and mass and inertia properties for the normalized 7R mechanism

Link i ai bi ai hi mo
i ro

ix ro
iy ro

iz Io
ixx Io

iyy Io
izz

1 1.00 0.55 90 h1 1.000 �0.50 0 0 0.0017 0.3477 0.3477
2 0 0 90 h2 0 0 0 0 0 0 0
3 1.10 0 90 h3 1.093 �0.55 0 0 0.0018 0.4579 0.4579
4 0 0 90 h4 0 0 0 0 0 0 0
5 0 0 90 h5 0 0 0 0 0 0 0
6 0.50 0 90 h6 0.536 �0.25 0 0 0.0009 0.0489 0.0489
7 1.30 0.40 150 h7 – – – – – – –

Total normalized mass of the mechanism,
P

mo
i ¼ 2:629. Normalized with respect to a1 = 0.1 m, m1 = 0.084 kg, xin = 1 rad/sec.

Table 3
Equimomental point mass of the normalized original mechanism

Link i Point-masses Distances

mo
i1 mo

i2 mo
i3 mo

i4 mo
i5 mo

i6 mo
i7 hix hiy hiz

1 0.2500 �0.2122 0.4622 0 0.4622 �0.2122 0.2500 0.5889 0.0292 0.0292
3 0.2732 �0.2324 0.5057 0 0.5057 �0.2324 0.2732 0.6466 0.0287 0.0287
6 0.1340 �0.1114 0.2454 0 0.2454 �0.1114 0.1340 0.3007 0.0290 0.0290
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• Total mass of the balanced mechanism in both the balancing methods are approximately same in the cor-
responding cases, e.g., 3.220 and 3.198 for cases (1) and (4), respectively.

Table 4
Design vector for the normalized balanced mechanisms

Cases ½w1;w2� Design vector

(a) Mass redistribution method

(1) [1.0,0.0]
½0:1212 �0:3017 0:6463 0:1430 0:6053 �0:3409 0:1606 0:4466 �0:1157 0:3313

�0:1157 0:3306 �0:1150 0:3309 0:5285 0:2829 �0:0096 �0:2548 �0:0976 0:1990 0:4442�T

(2) [0.5,0.5]
½0:6521 �0:7163 �0:0964 0:4256 0:9352 0:2290 �0:4292 0:8384 1:1460 �0:7195

�0:7185 2:0459 �1:6194 0:1199 �0:6279 2:9295 �1:7194 1:1138 0:2628 �2:0301 1:1777�T

(3) [0.0,1.0]
½�1:5240 �0:9882 0:9936 �0:4674 0:6876 0:4905 1:8079 0:3356 0:1637 0:1379

�0:0907 0:9190 �0:6174 0:2449 �0:1593 0:8132 �0:3126 0:2651 0:5540 �0:3610 0:6984�T

(b) Counterweight method

(4) [1.0,0.0]
½0:1716 �0:1736 0:1026 �0:0156 0:1825 �0:0923 0:0246 0:3383 0:0052 0:0120

�0:1606 0:0120 0:0052 0:1777 0:8146 0:6413 �0:0413 �0:1138 �0:3768 0:3060 0:3780�T

(5) [0.5,0.5]
½�1:1917 �1:5375 0:4706 �0:0625 0:6477 0:9568 1:5094 0:1899 �0:1244 0:0609

�0:1264 0:0655 �0:1290 0:0635 0:2003 0:2840 �0:1789 �0:0969 �0:0285 0:2999 0:6255�T

(6) [0.0,1.0]
½�2:8496 �3:6776 3:5322 3:8820 �6:2060 2:3213 3:9066 �0:8870 0:3400 0:1908

0:3576 �0:5485 1:0792 �0:5294 �1:9386 3:5731 0:4023 �1:4008 1:4840 0:6523 �1:1643�T

Table 5
Geometry, mass and inertia of the normalized balanced mechanisms

Case Link i m�i r�ix r�iy r�iy I�ixx I�iyy I�izz I�ixy I�iyz I�izx

(a) Mass redistribution method

(1) 1 1.034 �1.000 0.005 0.001 0.0018 0.3594 0.3594 0.0032 0.0002 0.0031
3 1.093 0.000 0.000 0.000 0.0018 0.4579 0.4579 �0.0043 �0.0002 �0.0043
6 1.093 0.500 0.000 �0.009 0.0018 0.0997 0.0997 �0.0029 �0.0003 �0.0030

3.220a

(2) 1 1.000 �0.900 �0.014 0.108 0.0017 0.3477 0.3477 �0.0128 �0.0003 �0.0098
3 1.093 �0.073 0.000 0.000 0.0018 0.4578 0.4578 �0.1293 0.0005 0.0760
6 1.106 0.487 0.060 �0.096 0.0019 0.1010 0.1010 �0.0351 �0.0019 0.0860

3.199

(3) 1 1.000 �0.841 �0.145 �0.077 0.0017 0.3477 0.3477 0.0799 0.0012 0.0186
3 1.093 �0.497 0.000 0.000 0.0018 0.4579 0.4579 �0.0324 0.0001 0.0256
6 1.498 0.097 �0.006 �0.017 0.0025 0.1367 0.1367 �0.0080 �0.0001 0.0276

3.591

Case Link i mb�
i rb�

ix rb�
iy rb�

iy Ib�
ixx Ib�

iyy Ib�
izz Ib�

ixy Ib�
iyz Ib�

izx

(b) Counterweight method

(4) 1 0.200 �0.100 �0.004 0.043 0.0003 0.0695 0.0695 �0.0028 �0.0001 �0.0028
3 0.390 1.100 0.000 0.000 0.0006 0.1633 0.1633 �0.0060 �0.0003 �0.0060
6 1.608 0.500 0.018 �0.006 0.0027 0.1468 0.1468 �0.0048 �0.0005 �0.0048

2.198b

(5) 1 0.793 �0.980 �0.200 �0.003 0.0014 0.2756 0.2756 0.0852 0.0002 0.0055
3 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 1.105 0.466 �0.018 �0.0093 0.0019 0.1009 0.1009 0.0017 �0.0003 0.0040

1.898

(6) 1 0.909 �0.977 0.028 �0.213 0.0015 0.3160 0.3160 0.4536 �0.0076 �0.0877
3 0.003 0.695 0.001 �0.001 0.0000 0.0011 0.0011 0.0407 0.0017 �0.0142
6 1.608 0.119 �0.006 �0.072 0.0027 0.1468 0.1468 �0.0404 0.0089 0.0294

2.520

a Total mass of the normalized mechanism,
P

m�i for mass redistribution.
b For counterweight method m�i ¼ mo

i þ mb�
i ;
P

m�i ¼ 3:198;
P

m�i ¼ 2:991;
P

m�i ¼ 3:056 for cases (4)–(6), respectively.
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Table 6
Comparison of the RMS values of the dynamic quantities

Case ðw1;w2Þ Input torque, ~s Shaking force, ~f sh Shaking moment, ~nsh
*

Original 0.1279 0.7772 0.7458
(1) (1.0, 0.0) 0.1102 (�14) 0.0050 (�99) 0.2904 (�61)
(2) (0.5, 0.5) 0.0940 (�27) 0.0875 (�89) 0.1119 (�92)

(3) (0.0, 1.0) 0.0322 (�75) 0.4078 (�48) 0.1797 (�85)
(4) (1.0, 0.0) 0.0699 (�45) 0.3051 (�61) 0.3520 (�53)
(5) (0.5, 0.5) 0.0639 (�50) 0.4614 (�41) 0.1785 (�76)

(6) (0.0, 10) 0.0562 (�56) 0.6451 (�17) 0.2920 (�61)

The value in the parentheses denotes the round-off percentage increment over the corresponding value of the original mechanism.
* Shaking moment with respect to the mid-point of the fixed link 7.
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Fig. 11. Dynamic performance of the mechanism: (a) normalized driving torque; (b) normalized shaking force and (c) normalized shaking
moment about the mid-point of the fixed link 7.
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• Both the shaking force and shaking moment are reduced more in the mass redistribution balancing than
counterweight balancing. With the mass redistribution, reduction in the RMS values of 89% and 92% is
achieved for the shaking force and shaking moment, respectively, over that of the original mechanism
whereas with counterweight balancing 41% and 76% reductions are seen in the RMS values of the shaking
force and shaking moment, respectively.

• It is observed that when shaking moment with respect to O1 is taken, the reactions at O7 are minimum and
vise-versa. Hence, to incorporate effect of both f71 and f76, the mid-point of O1O7 is chosen to determine the
shaking moment.

• It is not necessary that the point-masses are positives. The condition is that a set of positive and negative
point-masses represents a realizable link, i.e., the total mass and the moments of inertia about the axes pass-
ing through the centre of mass must be positive. Non-negativity of the total mass of each link is achieved by
the constraint in the form of Eq. (35b). Non-zero moments of inertia are achieved by virtue of the positive
link masses and their mass centre locations, as discussed after Eq. (36).

Based on the above observations, the mass redistribution method is effective. However, when this is not
possible, counterweight balancing can be adopted. In order to realize the link shapes one may use small ele-
ment superposing method [27], multi-layer link technique [28], and others, which is not discussed here further,
as it is out of the scope of this paper.

5. Conclusions

This paper presents a generic optimization problem formulation for the balancing of shaking force and
shaking moment of spatial mechanisms. In order to represent the inertial properties of a mechanism, the equ-
imomental system of point-masses is introduced. The nonlinear equimomental conditions are converted into a
set of conditions that are linear in point masses. This is achieved with the use of seven point-masses represent-
ing a rigid link. The constrained dynamic equations of motion are then obtained systematically in terms of the
point-masses. To obtain these equations, appropriate joints of a closed-loop system are cut and the concept of
the decoupled orthogonal complement matrices is used. The problem of mechanism balancing is then posed as
an optimization problem to minimize the shaking force and shaking moment simultaneously due to inertia
forces and moments. The results show that the shaking force and shaking moment are reduced more in the
mass redistribution balancing in comparison to that in the counterweight balancing. This is quite obvious
as the constraints are more stringent in the latter case. The effectiveness and the flexibility of the proposed
method is illustrated using the spatial RSSR mechanism. A significant improvement in the performances is
obtained in both the balancing methods compared to the original mechanism. In brief, the contributions of
this paper are as follows:

(1) Introduction of seven point-mass system for a rigid link out of several choices so as to obtain the rele-
vant parameters from a set of linear algebraic equations, namely, Eq. (15), instead of solving nonlinear
equations, as required in the four point-masses and others.

(2) Solving the dynamics of a closed-loop system recursively which is known to be computationally efficient
when the calculations are to be repeated several times, as in the optimization problem undertaken here.

(3) Formulation of balancing problem as optimization problem.
4) Providing practical solutions through link mass redistribution or using counterweights of the RSSR

mechanism for its reduction in shaking force and shaking moment.
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