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Abstract

A general mathematical formulation of optimization problem for balancing of planar mechanisms is presented in this
paper. The inertia properties of mechanisms are represented by dynamically equivalent systems, referred as equimomental
systems, of point-masses to identify design variables and formulate constraints. A set of three equimomental point-masses
for each link is proposed. In order to determine the shaking forces and the shaking moments, the dynamic equations of
motion for mechanisms are formulated systematically in the parameters related to the equimomental point-masses. The
formulation leads to an optimization scheme for the mass distribution to improve the dynamic performances of mecha-
nisms. The method is illustrated with two examples. Balancing of combined shaking force and shaking moment shows
a significant improvement in the dynamic performances compared to that of the original mechanisms.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Balancing of shaking forces and shaking moments in mechanisms is important in order to improve their
dynamic performances and fatigue life by reducing vibration, noise and wear. Several methods are developed
to eliminate the shaking forces and shaking moments in planar mechanisms. The methods to completely elim-
inate the shaking force are generally based on making the total mass centre of a mechanism stationary. Dif-
ferent techniques are used for tracing and making it stationary. The method of principal vectors [1] describes
the position of the mass centre by a series of vectors that are directed along the links. These vectors trace the
mass centre of the mechanism at hand and the conditions are derived to make the system mass centre station-
ary. A more referred method in the literature is the method of linearly independent vectors [2], which make the
total mass centre of a mechanism stationary. This is achieved by redistributing the link masses in such a
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manner that the coefficient of the time-dependent terms of the equations describing the total centre of mass
trajectory vanish. Kosav [3] presented a general method using ordinary vector algebra instead of the complex
number representation of the vectors [2] for full force balance of planar linkages. One of the attractive features
of a force-balanced linkage is that the shaking force vanishes, and the shaking moment reduces to a pure tor-
que which is independent of reference point. However, only shaking force balancing is not effective in the bal-
ancing of mechanism. There are many drawbacks of the complete shaking force balancing. For example, (a) it
mostly increases the total mass of the mechanism, (b) it needs some arrangement like counterweights to add
increased mass, and (c) it increases the other dynamic characteristics, e.g., shaking moment, driving torque,
and bearing reactions. The influence of the complete shaking force balancing is thoughtfully investigated
by Lowen et al. [4] on the bearing reactions, input-torque, and shaking moment for a family of crank-rocker
four-bar linkages. This study shows that these dynamic quantities increase and in some cases their values rise
up to five-times.

Several authors attempted the balancing problem as a complete shaking force and shaking moment balanc-
ing. Elliot and Tesar [5] developed a theory of torque, shaking force, and shaking moment balancing by
extending the method of linearly independent vectors. Complete moment balancing is also achieved by a
cam-actuated oscillating counterweight [6], inertia counterweight and physical pendulum [7], and geared coun-
terweights [8–10]. More information on complete shaking moment balancing can be obtained in a critical
review by Kosav [11], and Arakelian and Smith [12]. Practically these methods not only increase the mass
of the system but also increase its complexity.

An alternate way to reduce the shaking force and shaking moment along with other dynamic quantities
such as input-torque, bearing reactions, etc., is to optimize all the completing dynamic quantities. Since shak-
ing moment reduces to a pure torque in a force-balanced linkage, many researchers used the fact to develop
their theory of shaking moment optimization. Berkof and Lowen [13] proposed an optimization method for
the root-mean-square of the shaking moment in a fully force-balanced in-line four-bar linkage whose input
link is rotating at a constant speed. As an extension of this method Carson and Stephenes [14] highlighted
the need to consider the limits of feasibility of the link parameters. A different approach for the optimization
of shaking moment in a force-balanced four-bar linkage is proposed by Hains [15]. Using the principle of the
independence of the static balancing properties of a linkage from the axis of rotation of the counterweights,
partial shaking moment balancing is suggested in [16]. On the other hand, the principle of momentum conser-
vation is used by Wiederrich and Roth [17] to reduce the shaking moment in a fully force-balanced four-bar
linkage.

Dynamic quantities, e.g., shaking force, shaking moment, input-torque, etc., depend on the mass and iner-
tia of each link, and its mass centre location. These inertia properties of mechanism can be represented more
conveniently using the dynamically equivalent system of point-masses [18,21]. The dynamically equivalent sys-
tem is also referred as equimomental system. The concept is further elaborated by Wenglarz et al. [19] and
Huang [20]. Using the concept of equimomental system Sherwood and Hockey [21] presented the optimization
of mass distribution in mechanisms. Hockey [22] discussed the input-torque fluctuations of mechanisms sub-
ject to external loads by means of properly distributing the link masses. Using the two point-mass model,
momentum balancing of four-bar linkages was presented in [17]. Optimum balancing of combined shaking
force, shaking moment, and torque fluctuations in high speed linkages is reported in [23,28], where a two
point-mass model was used. The concept can also be applied for kinematic and dynamic analyses of mecha-
nisms [24,25], and the minimization of inertia-induced forces [26,27] of spatial mechanisms. Although scat-
tered, the applications of equimomental system are found in the above literatures. None of them, however,
presents a comprehensive study of the concept and its application in the balancing of mechanisms.

As discussed above, only shaking force balancing of mechanisms does not imply their balancing of shaking
moment. In order to reduce inertia-induced forces, e.g., the shaking force and shaking moment, along with
other dynamic quantities such as input-torque and bearing reactions, it is required to trade-off among these
competing dynamic quantities. The analytical solution to the optimization of shaking force and shaking
moment is difficult, and possible only for simple planar linkages. Hence, balancing aspect of mechanisms is
postulated as an optimization problem in this paper. Once the mathematical optimization problem is formu-
lated, one can use the existing computer libraries to solve it. The formulation of the optimization problem,
nevertheless, is difficult because it needs the following:
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1. formulation of dynamic equations to calculate the joint reactions and other dynamic characteristics;
2. identification of the design variables and formulation of the constraints that define the design space of fea-

sible solutions; and
3. an objective function which is to be used as an index of merit for the dynamic performance of a linkage at

hand.

In this paper, the first difficulty is overcome by formulating the equations of motion of a closed-loop system
in minimal set using the joint-cut method. Concerning the second difficulty, the design variables and the con-
straints are identified by introducing the equimomental system of point-masses. The formulation leads to an
optimization scheme for the mass distribution of bodies to optimize the dynamic performances, e.g., shaking
force and shaking moment, and driving torque fluctuations. A novelty of the present approach is that the bal-
ancing problem of mechanisms is formulated as a general mathematical optimization problem. The method-
ology is quite general and not restricted only to single-loop four-bar linkage as reported in [28]. The dynamic
analysis presented in [28] is extended in this paper for multiloop systems as well. The optimization methodol-
ogy proposed in this paper is also more effective than those reported in [23,28], as explained in Section 4.1.2. It
gives flexibility to the designer to put constraints according to the application. Our original claims in this paper
are: (i) the dynamic modelling of an n-link multiloop mechanism, (ii) the formulation of the optimization
problem for the n-link multiloop mechanism, and (iii) the use of three point-mass systems for the dynamic
modelling and optimization of the mechanism mentioned in steps (i) and (ii) above. The proposed methodol-
ogy is illustrated with two examples. In the first example, a four-bar linkage is considered. The effectiveness of
the method is shown by comparing the analytical results [2] for full force balancing of the four-bar linkage.
The other example is multiloop mechanism used in carpet scraping machine for cleaning carpets.

This paper is organized as follows. Section 2 explains the concept of equimomental system for a rigid body
undergoing in a plane motion. Optimization problem formulation for a mechanism using the equimomental
concept is shown in Section 3. The effectiveness of the methodology is illustrated in Section 4 using two mech-
anisms. Finally, conclusions are given in Section 5. Two Appendices A and B are provided additionally to
derive the equations of motion using three point-mass model and its comparison with two point-mass model,
respectively.

2. Equimomental system

A comprehensive study of the equimomental system of a rigid body undergoing in a plane motion is pre-
sented in this section. The sets of equimomental point-masses for the rigid body are proposed in order to
obtain equimomental system of the original system consisting of interconnected rigid bodies. The concept
is illustrated using three point-mass model.

As shown in Fig. 1, consider a rigid body whose the centre of mass at C and a coordinate frame OXY fixed
to it at O. Motion of the body takes place in the XY plane. We seek a set of dynamically equivalent system of n
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Fig. 1. Dynamic equivalence of a planar rigid body.

312 H. Chaudhary, S.K. Saha / Mechanism and Machine Theory 43 (2008) 310–334



Author's personal copy

point-masses rigidly fixed to the local frame. Each point-mass has its mass mi and located at coordinates ðxi; yiÞ
in the local frame. For planar motion, the requirements of the dynamical equivalence of the system of point-
masses and the original rigid body are [19]: (a) the same mass; (b) the same centre of mass; and (c) the same
moment of inertia about an axis perpendicular to the plane and passing through origin, O, i.e.,

Xn

i¼1

mi ¼ m ð1Þ

Xn

i¼1

mixi ¼ m�x;
Xn

i¼1

miyi ¼ m�y ð2Þ–ð3Þ

Xn

i¼1

miðx2
i þ y2

i Þ ¼ I c þ mð�x2 þ �y2Þ ð4Þ

where m and Ic are the mass and the moment of inertia about the centre of mass, Cð�x; �yÞ, of the rigid body,
respectively.

Since each mass introduces three parameters (mi; xi; yi) to identify it, 3n parameters are required for n point-
masses. Only four parameters out of them can be obtained uniquely from Eqs. (1)–(4) assigning the remaining
(3n � 4) arbitrary values. The number of arbitrarily assigned parameters increases with the number of point-
masses. With a single point-mass having only three unknown parameters and four equations, Eqs. (1)–(4), lead
to overdetermined system of equations, which has no solution unless the equations are consistent. Moreover,
two point masses have the six unknown parameters [28]. The four parameters out of them can be solved
uniquely assigning the other two. Hence, minimum two point masses are required to represent a rigid body
moving in a plane. However, it is not always possible to get all point-masses positive.

To illustrate the procedure of finding a set of dynamically equivalent point-masses, consider a three point-
mass model of a rigid body moving in the XY plane. The polar coordinates, Fig. 1, of the point-masses are
ðli; hiÞ, for i ¼ 1; 2; 3; where li �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i

p
and hi � tan�1(yi/xi). The three point-mass model would then be

dynamically equivalent to the original rigid body if Eqs. (1)–(4) are satisfied, i.e.,

X3

i¼1

mi ¼ m ð5Þ

X3

i¼1

miliChi ¼ mdCh;
X3

i¼1

miliShi ¼ mdSh ð6Þ–ð7Þ

X3

i¼1

mil
2
i ¼ mk2 ð8Þ

where d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
and h � tan�1ð�y=�xÞ are polar coordinates of the mass centre of the rigid body. Moreover,

Sh � sin h; Ch � cos h, and mk2 � Ic + md2 � k being the radius of gyration about the point, O. Note that
there are nine unknowns, namely, mi; li; and hi, for i ¼ 1; 2; 3, and four equations. Now, it is important to de-
cide which five parameters would be chosen arbitrarily so that the remaining four are solved uniquely. It is
advisable to choose li and hi so that the dynamic equivalence conditions become linear in point-masses. Hence,
assigning l2; l3 and hi, for i ¼ 1; 2; 3, the remaining, i.e., four parameters, m1, m2, m3, and l1 are determined
uniquely using Eqs. (5)–(8). Assuming l2 = l1; l3 = l1 and substituting them in Eq. (8), yields l1 = ±k. Taking
the positive value for l1 that is physically possible, the three point-masses are then determined from Eqs. (5)–
(7). Substituting l1 = k in Eqs. (5)–(7), these equations can be written as

Km ¼ b ð9Þ

where the 3 · 3 matrix, K, and the 3-vectors, m and b are as follows:

K �
1 1 1

kCh1 kCh2 kCh3

kSh1 kSh2 kSh3

2
64

3
75; m �

m1

m2

m3

2
64

3
75; b �

m

mdCh

mdSh

2
64

3
75 ð10Þ
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From Eq. (9), it is clear that the solution for m exists if det(K) 5 0, i.e., h1 5 h2, h1 5 h3, and h2 5 h3. It
means that any two point masses should not lie on the same radial line emanating from the origin O. The vec-
tor m can be obtained as

m ¼ K�1b ð11Þ
where K�1 is evaluated as

K�1 � k
detðKÞ

kSðh3 � h2Þ ðSh2 � Sh3Þ ðCh3 � Ch2Þ
�kSðh3 � h1Þ ðSh3 � Sh1Þ ðCh1 � Ch3Þ
�kSðh1 � h2Þ ðSh1 � Sh2Þ ðCh2 � Ch1Þ

2
64

3
75 ð12Þ

in which, det(K) � k2[S(h3 � h2) + S(h2 � h1) + S(h1 � h3)]. It is evident from the solution, Eq. (11), that the
sum of the point-masses is equal to the mass of the body for any values of angles except h1 5 h2, h1 5 h3, and
h1 5 h3. Note here that, there is a possibility of some point masses becoming negative. However, it does not
hindrance the process of representing the rigid body as long as the total mass and the moment of inertia about
the polar axis through centre of mass give positive value [21]. As an example, if h1 = 0; h2 = 2p/3; and h3 = 4p/
3, the point masses are calculated as

m1 ¼
m
3

1þ 2

k
dCh

� �
; m2 ¼

m
3

1� dCh
k
þ

ffiffiffi
3
p

dSh
k

 !
; and

m2 ¼
m
3

1� dCh
k
�

ffiffiffi
3
p

dSh
k

 ! ð13Þ–ð15Þ

From Eqs. (13) to (15), if the origin point, O, coincides with the mass centre of the body, C, i.e., d = 0, then
m1 = m2 = m3 = m/3, which means that the point masses of the body is distributed equally, and located on the
circumference of a circle having radius k.

In mechanism analysis, the links are often considered one-dimensional, e.g., a straight rod, in which its
diameter or width and thickness are very small in comparison to length. Considering that the mass lying along
the x-axis of local frame, the dynamical equivalence conditions, Eqs. (1)–(4), reduce toXn

i¼1

mi ¼ m;
Xn

i¼1

mixi ¼ m�x;
Xn

i¼1

mix2
i ¼ Ic þ m�x2 ð16Þ–ð18Þ

Here also minimum two point-masses are required to represent the one-dimensional link, introducing a total
of four variables, i.e., m1;m2; x1; x2. Specifying any one of the variables, the other three variables can be deter-
mined uniquely.

3. Formulation of the balancing problem

The problem of mechanism balancing is formulated as an optimization problem in this section. In order to
identify the design variables and constraints a set of equimomental point-masses is defined for each link of
mechanism at hand. To calculate the shaking force and shaking moment dynamical equations of motion in
minimal set are derived in the parameters of point-masses. These parameters are now treated as design param-
eters to redistribute the link masses to optimize the shaking force and moment.

3.1. Unconstrained equations of motion

Referring to the ith rigid link, Fig. 2a, of the mechanism, a set of three equimomental point-masses is
defined as shown in Fig. 2b. The location of the mass centre, Ci, is defined by vector, di at angle, hi, from
the axis OiXi of the local frame OiXiYi fixed to the link. Link’s mass and the mass moment of inertia about
Oi are mi and Ii, respectively. The point-masses, mi1, mi2, mi3, are fixed in local frame, OiXiYi, and their dis-
tances, li1; li2; li3, and angles, hi1; hi2; hi3, are defined from the origin Oi of the link and axis OiXi, respectively.
Axis OiXi is set along the line between Oi and Oi+1, that is at angle ai from the axis OX of the fixed inertial
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frame OXY. Points Oi and Oi+1 in the link are chosen as the point where the ith link is joined to its surround-
ing links. All the vectors are represented in the fixed frame, OXY, unless stated otherwise.

If the system of three point-masses is equimomental to the ith link, then it must satisfy the conditions given
by Eqs. (5)–(8), i.e.,X

j

mij ¼ mi ð19Þ
X

j

mijlijCðhij þ aiÞ ¼ midiCðhi þ aiÞ ð20Þ
X

j

mijlijSðhij þ aiÞ ¼ midiSðhi þ aiÞ ð21Þ
X

j

mijl
2
ij ¼ I i ð22Þ

Note that the first subscript i denotes the link number, and the second subscript j ¼ 1; 2; 3, represents point-
mass corresponding to the ith link.

Equations of motion, now, are derived using two approaches. One way is to derive equations of motion
from rigid body motion. Then the dynamic equivalent conditions are applied to get inertial properties of
the links in the parameters of the point masses. An alternate approach is to write the equations motion of
point masses. The constrained equations of motion of the system of the point masses are then derived by
imposing constraints, i.e., the lengths between the point masses are constants. This approach is given in
Appendix A. Here, the first method is adopted. The Newton–Euler (NE) equations [28] of motion for the
ith rigid link moving in a plane can be written as

Mi_ti þ Citi ¼ wi ð23Þ

where the three-dimensional vectors, ti; _ti and wi, are defined as the twist, twist-rate and wrench of the ith link
with respect to the origin, Oi, i.e.,

ti �
xi

vi

� �
; _ti �

_xi

_vi

� �
and wi �

ni

f i

� �
ð24Þ

in which xi and vi are the scalar angular velocity about the axis perpendicular to the plane of motion, and the
2-vector of linear velocity of the origin of the ith link, Oi, respectively. Accordingly, _xi and _vi are the time

mi1

mi3
θi2 li3

Yi Xi

Oi

mi2

li1

li2

θi1

θi3

X

Y

Oi+1

O

mi

di

Yi Xi

Oi

θi

Ci

αi

X

Y

O

Oi+1

a b

Fig. 2. The ith link: (a) the original link, (b) its equimomental three point-masses system.
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derivatives of the xi and vi, respectively. Also, the scalar, ni, and the 2-vector, fi, are the resultant moment
about Oi and the resultant force at Oi, respectively. Moreover, the 3 · 3 matrices, Mi and Ci are defined as

Mi �
I i �mid

T
i E

miEdi mi1

" #
and Ci �

0 0T

�mixidi O

" #
ð25Þ

where 1 and O are the 2 · 2 identity and zero matrices, respectively, and 0 is the 2-vector of zeros, and the 2 · 2
matrix E is defined as

E �
0 �1

1 0

� �

On substitution of the expressions for scalar, Ii, and the 2-vector, midi, from Eqs. (19)–(22), the 3 · 3 matrices,
Mi and Ci are obtained as

Mi �

P
j

mijl
2
ij �

P
j

mijlijSðhij þ aiÞ
P

j
mijlijCðhij þ aiÞ

�
P

j
mijlijCðhij þ aiÞ

P
j

mij 0P
j

mijlijSðhij þ aiÞ 0
P

j
mij

2
666664

3
777775; and

Ci �

0 0 0

�xi
P

j
mijlijCðhij þ aiÞ 0 0

�xi
P

j
mijlijSðhij þ aiÞ 0 0

2
6664

3
7775 ð26Þ

Note that the matrices, Mi and Ci, are applicable for a system n point-masses if j = 1, . . .,n. Eq. (26) can be
shown to be correct as derived in Appendix A from the Newton’s equations of motion valid for the point
masses. Note in Eq. (26), that out of nine parameters, mij, hij, lij, for j ¼ 1; 2; 3, for the ith link, five parameters
are assigned arbitrarily using the strategy laid down in Section 2, i.e.,

hi1 ¼ 0; hi2 ¼ 2p=3; hi3 ¼ 4p=3; and li2 ¼ li3 ¼ li1 ð27Þ

The other four parameters, namely, mi1;mi2;mi3, and li1, are then treated as design variables. Equations of mo-
tion, Eq. (23), for a mechanism with n moving links are then written as

M_tþ Ct ¼ w ð28Þ

where the 3n · 3n matrices, M, and C, are defined as, M � diag M1 � � �Mn½ �; C � diag C1 � � �Cn½ �. Also, the 3n-
dimensional generalized twist, twist-rate and wrench vectors, t, _t and w, respectively, are

t � tT
1 � � � tT

n

� �T
; _t � _tT

1 � � � _tT
n

� �T
; and w � wT

1 � � � wT
n

� �T

The expressions in the left-hand side of Eq. (28) denote the effective inertial forces and moments, and those on
the right-hand side represent the external forces and moments, and those due to the constraints at joints. The
3n scalar equations of motion, Eq. (28), for a mechanism having n moving links are referred as unconstrained
equations of motion for the mechanism. For example, one has to solve nine equations for a four-bar linkage to
find all unknown reactions and driving force. Therefore, determination of the reactions involves lengthy cal-
culations, such as matrix inversion or the solution of simultaneous equations. These calculations are repeated
hundreds of time in an optimization code. Hence, it is required to reduce the dimension of the unconstrained
equations systematically to a minimal set where one has to solve a less number of equations at a time.

3.2. Constrained equations of motion

Assume that there is one or more closed kinematic loops in a multiloop mechanism. Each closed-loop,
Fig. 3, of the mechanism is cut at one of the kinematic joints in order to obtain open-loop system [29]. To
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maintain the equilibrium of the mechanism, reaction forces at the cut-joints, referred here as the Lagrange
multipliers, are taken as external forces acting on the mechanism.

Decomposing the wrench, wi, of the ith link into a wrench, wE
i , of externally applied forces and moments on

the ith body by the environment external to the system, and a constraint wrench, wC
i , of the non-working

forces and moments of uncut joints, and wk
i due to the Lagrange multipliers, i.e., wi � wE

i þ wC
i þ wk

i , Eq.
(28) is rewritten as

M_tþ Ct ¼ wE þ wC þ wk ð29Þ
Introducing a vector of independent generalized joint coordinates, q, for the open-loop system the generalized
twist can be represented as the following linear transformation [30]:

t ¼ N _q ð30Þ
where the 3n · q matrix, N is natural orthogonal complement (NOC) of constraint Jacobian. The matrix N can
be determined using the decoupled orthogonal complement matrices [31]. Pre-multiplication of the transpose
of the NOC with the unconstrained NE equations of motion, Eq. (29), leads to a set of constrained equations
of motion free from constraint wrenches at the joints other than the cut joints, i.e.,

NTðM_tþ CtÞ ¼ NTðwE þ wkÞ ð31Þ
where NTwC = 0 as constraint forces and moment do not perform any work. Eq. (31) can be written as

NTw� ¼ sE þ sk ð32Þ
where the 3n-vector of inertia wrench, w� � w�T1 � � � w�Tn

� �T
is known from input motion, i.e.,

w�i �Mi_ti þ Citi, sE � NTwE: the q-vector of generalized forces due to external forces and moments; and
sk � NTwk: the q-vector of generalized forces and moments due to the Lagrange multipliers.

Scalar equations of Eq. (32) are linear in a small set of the Lagrange multipliers, and driving forces/torques,
which are solvable for given motion. The constraint forces and moments at all the uncut joints then can be
determined recursively from the distal links to the first link using the force and moment balance. Unlike con-
ventional approach where the constraint forces and moments, and driving forces and torques are all solved
simultaneously, the proposed algorithm solves smaller set of unknowns simultaneously, and rest recursively.
The derivation of constrained equations for a multiloop mechanism is illustrated in the next subsection.

3.3. Illustration: the carpet scraping machine mechanism

The carpet scraping machine [32] shown in Fig. 4, is used to clean a carpet after it is woven. It consists of
two mechanisms, namely, the Hoeken’s four-bar and the Pantograph mechanisms. The Hoeken’s mechanism
is a crank-rocker mechanism whose coupler generates a partially straight path. The straight line stroke gen-
erated by the Hoken’s mechanism is magnified by the Pantograph mechanism. The multiloop mechanism
has three independent closed loops namely, 1-2-3-8-1, 1-2-5-4-8-1, and 1-2-7-6-4-8-1. Also, note that the links,
1, 3, and 4 are connected to the fixed link, 8. Links, 5 and 7, are not directly connected to each other; they are
both joined to 2. In order to open the mechanism, revolute joints between links 3 and 8, 2 and 5, and 2 and 7 of
loops 1-2-3-8-1, 1-2-5-4-8-1, and 1-2-7-6-4-8-1, are cut, respectively. Origins of links are defined by Oi, for
i ¼ 1; . . . ; 7. Because of cutting these joints the Lagrange multipliers, two for each loop, now appear in the
open system as indicated in Fig. 5.

Cut
joint

λ

a b

Fig. 3. A closed-loop in multiloop mechanism: (a) the closed loop, (b) its open-loop.
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Now, these forces are considered as external forces acting on the open system. Because of the open system,
the relative joint coordinates, qi for i ¼ 1; . . . ; 7, become independent coordinates. Observing structures of the
open system, sub-system I (Fig. 5a) is serial type whereas sub-system II (Fig. 5b) has tree structure. The open
system has seven degree-of-freedom. It implies that one can find seven constrained equations of motion in
seven unknown, namely, the 2-vectors k83; k25; k27 and the scalar sD. However, the sub-system II is 4-dof
and has four unknowns, namely, the components of 2-vectors k25; k27. Hence, its four constrained equations
of motions have four unknowns and system of the equation is solvable.

3.3.1. Constrained equations for subsystem II

The four constrained equations of motion, Eq. (32), for subsystem II are now obtained as

NTw� ¼ sE þ sk ð33Þ

where the natural orthogonal complement is determined systematically using decoupled natural orthogonal
complement (DeNOC) matrices [31]. The 12 · 4 matrix N for sub system II is given by

N ¼

p 0 0 0

A54p p 0 0

A64p 0 p 0

A74p 0 A76p p

2
6664

3
7775 ð34Þ
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Fig. 4. Carpet scraping machine: (a) photograph [32], (b) multiloop mechanism.
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Fig. 5. The open system of the scraping machine mechanism: (a) sub-system I, (b) sub-system II.
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where the 3-vector, p, and the 3 · 3 matrix, Aij, are defined as

p � 1 0 0½ �T and Aij �
1 0T

�aT
ijE 1

" #

respectively, and 0 and 1 are zero vector and identity matrix of compatible sizes. For the planar motion, aij is
the 2-vector from the origin of ith link, Oi, to the origin of jth link, Oj.

The vectors of inertia wrench, w� � ½ðw�4Þ
T
; ðw�5Þ

T
; ðw�6Þ

T
; ðw�7Þ

T�T, and wrench due external forces and

moments, wE � ½ðwE
4 Þ

T
; ðwE

5 Þ
T
; ðwE

6 Þ
T
; ðwE

7 Þ
T�T, are obtained from input motion and external forces acting on

the mechanism, respectively. If there are no external forces and moments acting on the mechanism, wE
4 ¼

wE
5 ¼ wE

6 ¼ wE
7 ¼ 0. Similarly, the wrench due to the Lagrange multipliers wk � ½ðwk

4Þ
T
; ðwk

5Þ
T
; ðwk

6Þ
T
; ðwk

7Þ
T�T,

where wk
4;w

k
5;w

k
6, and wk

7, are found as

wk
4 ¼ 0; wk

5 ¼
1 �aT

5;CE

0 1

� �
0

k25

� �
; wk

6 ¼ 0; and wk
7 ¼

1 �aT
7;CE

0 1

� �
0

k27

� �
ð35Þ

Then the generalized torque, sk = NTwk, is obtained as

sk ¼

�aT
4;CEðk25 þ k27Þ
�aT

5;CEk25

�aT
6;CEk27

�aT
7;CEk27

2
66664

3
77775 ð36Þ

where the Langrage multipliers have two components, namely, k25 � [k25x, k25y]T, and so on. The four con-
strained equations, Eq. (33), are now solved for four scalar multipliers, namely, k25x, k25y, k27x, and k27y. These
multipliers are then the known external forces in subsystem I.

3.3.2. Constrained equations for subsystem I

In the next step, for sub system I the 9 · 3 matrix N is given by

N ¼
p 0 0

A21p p 0

A31p A32p p

2
64

3
75 ð37Þ

w� � ½ðw�1Þ
T
; ðw�2Þ

T
; ðw�3Þ

T�T; and wE � ½ðwE
1 Þ

T
; ðwE

2 Þ
T
; ðwE

3 Þ
T�T. Hence, the 3-vectors of generalized torques of

external forces and Lagrange multipliers, respectively, are obtained as

sE ¼
sD þ aT

1;CEðk25 þ k27Þ
þaT

2;CEðk25 þ f27Þ
0

2
64

3
75 and sk ¼

�aT
1;BEk83

�aT
2;BEk83

�aT
3;BEk83

2
64

3
75 ð38Þ

Thus the constrained equations obtained from Eqs. (37) and (38) can be solved for three unknowns, k83x, k83y,
and sD. Rest of the reactions, i.e., f67; f46; f45 and f84 in sub-system II, and f23; f12 and f81, in sub-system I are
finally solved recursively. Thus, dynamic analysis for the constraint forces of the multiloop mechanism is car-
ried out with maximum of four simultaneous equations only, whereas conventional approach [33] would re-
quire the solution of twenty one simultaneous equations.

3.4. Shaking force and shaking moment

Fig. 6 shows n moving links of a multiloop linkage in which fixed link, (n + 1)st, is detached by applying
reaction forces and moments of it on moving links. Amongst n moving links, let assume that p links are con-
nected to the fixed link. The shaking force is then defined as the vector sum of the inertia forces associated with
the mechanism, and the shaking moment is the sum of the inertia couples and the moment of the inertia forces
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[13,23]. By the definitions, the shaking force, and the shaking moment with respect to O1, transmitted to the
fixed link are the reaction of the resultant inertia forces and moments of the mechanism, respectively, i.e.,

fsh ¼ �
Xn

i¼1

f�i ; and nsh ¼ �
Xn

i¼1

ðn�i � aT
1;iEf�i Þ ð39Þ

where n�i and f�i are inertia moment and the 2-vector of inertia force, respectively, acting at and about origin Oi

of the ith body and they are component of w�i . The 2-vector a1,i is defined from O1 to origin of the ith link as
shown in Fig. 6.

Substituting the resultant force and moment in terms of external force and moment, and reactions due to
the adjoining joints, the NE equations of motion, Eq. (23), for the ith link are rewritten as

f�i ¼ fe
i þ
X

k

fki; and n�i ¼ ne
i þ
X

k

ðnki � aT
ikEfkiÞ ð40Þ

where fki and nki are the bearing reaction force and moment on the ith link by the kth link, respectively. Fur-
thermore, fe

i and ne
i are the external force and moment acting at and about origin, Oi, respectively. Note that

origin for the ith link is defined at the joint where it is coupled the ith link with its previous link. Also, twist,
twist-rate, and inertia force and torque are also defined at this point. Vector aik is defined from the origin of
the ith link to the joint where the kth link is connected. Note that the driving torques and/or forces are taken
as external torques and/or forces. Now, using, Eqs. (40), the shaking force, and the shaking moment w.r.t. to
O1 transmitted to the fixed link are obtained as

fsh ¼ �
Xp

j¼1

fnþ1;j �
Xn

i¼1

fe
i ; and nsh ¼ �

Xp

j¼1

ðnnþ1;j � aT
1;jEfnþ1;jÞ �

Xn

i¼1

ðne
i � aT

1;iEfe
i Þ ð41Þ

where fn+1,j represents the reaction force on the jth link by the fixed link, where j = 1, . . .,p. For all links not
connected with the fixed link, i.e., p < i 6 n, the term fn+1,j is zero. The dynamic quantities, e.g., shaking force,
shaking moment, bearing reactions, and design variables are of different units and magnitudes. In order to
harmonize them, the original mechanism is made dimensionless by normalizing the parameters as follows:

aij := aij/a1 Normalized distance between joints i and j; where a1 � a12

di := di/a1 Normalized distance of the mass centre from the ith link origin
mi :¼ mi=mo

1 Normalized mass of the ith link
I i :¼ I i=ðmo

1a2
1Þ Normalized moment of inertia of the ith link w.r.t. its origin, Oi

1

2

i
C1

C2

Ci

Y

O1

C4

Cn-1

n

4

nn ,1+f1,1+nn

i1,n+n
nn ,1+n
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Fig. 6. A multiloop mechanism.
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The dynamic quantities are based on forces and moments non-dimensionalized with respect to the original
mechanism parameters and input speed as typically suggested in the literature [35]. They are defined as

f :¼ f =ðmo
1a1x2

1Þ Definition of normalized force to any force, f

n :¼ n=ðmo
1a2

1x
2
1Þ Definition of normalized moment to any moment, n

where f is the magnitude of vector f. Superscript ‘o’ is used for those parameters of the original mechanism
whose values are varying in the optimization.

3.5. Optimality criterion

There are many possible criteria by which the shaking force and shaking moment transmitted to the fixed
link of the mechanism can be minimized. For example, one criterion could be the root-mean-square (RMS) of
shaking force, shaking moment, and required input-torque for given motion, and/or combination of these.
Besides RMS values there are other ways to specify the dynamic quantities, namely, by maximum values,
or by the amplitude of the specified harmonics, or by the amplitudes at certain point in the cycle. The choice
of course depends on the requirements. Here, the RMS value is preferred over others as it gives equal emphasis
on the results of every time instances of the cycle, and every harmonic component. The root mean square
(RMS) values of the normalized shaking force, fsh, and the normalized shaking moment, nsh, at p discrete posi-
tions of the mechanism are defined as

~f sh �
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
f 2

sh

q
; and ~nsh �

1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n2

sh

q
ð42Þ

where ~f sh and ~nsh are the RMS values of the normalized shaking force and the normalized shaking moment,
respectively. Now, optimality criteria can be weighted sum of competing dynamic quantities, namely, shaking
force, shaking moment, input-torque and the reactions due to the frame of mechanism. However, it obvious
from Eq. (41) that the shaking force and shaking moment include the frame reactions and the input-torque,
respectively. Hence, it is sufficient to form optimality criteria as weighted sum the shaking force and shaking
moment. Considering the RMS values of the normalized shaking force and shaking moment, an optimality
criterion is proposed as

z ¼ w1
~f sh þ w2~nsh ð43Þ

Moreover, w1 and w2 are weighting factors whose values may vary depending on application. For example,
w1 = 1.0 and w2 = 0 if the objective is to minimize the shaking force only.

3.6. Design variables and constraints

Based on the dynamic analysis presented in Sections 3.1 and 3.2, shaking force and shaking moment are
formulated in link parameters, mij; hij; lij for j ¼ 1; 2; 3. Amongst them, five parameters are assigned arbitrarily
according to Eq. (27). The remaining four parameters, namely, mi1;mi2;mi3, and li1, for each link are consid-
ered as the design variables (DV). Finally, for a mechanism having n moving links, the shaking force and shak-
ing moment are obtained as function of design variables, i.e.,

~f sh ¼ f1ðxÞ; and ~nsh ¼ f2ðxÞ ð44Þ
where the 4n-dimensional vector, x, of the design variables for the normalized mechanism is defined as follows:

x � ½m11;m12;m13; l11; � � � ;mn1;mn2;mn3; ln1�T ð45Þ
The minimum mass, mi,min, and its distribution of the ith link can be decided by the strength of material. Fur-
thermore, Maximum mass, mi,max, can be taken according to what extent the shaking force and shaking mo-
ment eliminated. Now, the optimization problem is posed as

H. Chaudhary, S.K. Saha / Mechanism and Machine Theory 43 (2008) 310–334 321



Author's personal copy

Minimize
w:r:t: x

zðxÞ ¼ w1
~f sh þ w2~nsh ð46aÞ

Subject to mi;min 6 ðmi1 þ mi2 þ mi3Þ 6 mi;max; ð46bÞ
li1;min 6 li1 6 li1;max for i ¼ 1; . . . ; n: ð46cÞ

where li1;min1
and li1,max are bounds on the distances of point-masses. The feasible region of the design space is

defined by Eqs. (46b) and (46c).

4. Numerical examples

The flexibility and effectiveness of the proposed optimization problem formulation, as proposed in Section
3, is demonstrated with help of Hoeken’s four-bar and the multiloop mechanism used in the carpet scraping
machine shown in Fig. 4.

4.1. Example 1: Hoeken’s four-bar mechanism

The normalized link parameters of the original Hoeken’s four-bar mechanism, Fig. 7, used in the carpet
scraping machine are given in Table 1. All the parameters are made dimensionless w.r.t. the parameters of
the 1st link. The equimomental point-masses for each link are obtained using Eqs. (19)–(22), which are given
in Table 2. To find the effect of inertia-induced forces and moments, it is assumed that no external forces and
moments acting other than the driving torque. Then the shaking force and shaking moment are obtained using
Eq. (41) for the mechanism as

fsh ¼ �ðf41 þ f43Þ and nsh ¼ �ðn41 þ n43 � aT
13Ef43 þ ne

1Þ ð47Þ

d2
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a13

2θ ′

Fig. 7. A Hoeken’s four-bar mechanism.

Table 1
Parameters of the normalized original Hoeken’s mechanism

Link i 1 2 3

Link length, aik 1 3.02 3.02
Link mass, mo

i 1 7.100 1.900
Center of mass location, do

i 0.15 2.86 1.25
Center of mass location, ho

i (�) 0 0 0
Moment of inertia, Io

i 0.4023 84.4028 5.8299

O1O2 = a12 = 0.038 m; mo
1 ¼ 0:326 kg; O1O3 = a13 = 2.35 @ 0�; x1 = 1 rad/s.
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where ne
1 is the driving torque applied to the link #1. Since all joints in the mechanism are revolute,

n41 = n12 = n23 = n43 = 0. In order to know effect of force balancing, the optimization problem of the mech-
anism balancing is first formulated as force balancing problem.

4.1.1. Shaking force balancing

The effectiveness of the balancing method proposed in Section 3 is compared with the analytical balancing
method proposed by Berkof and Lowen [2]. Berkof and Lowen found balancing conditions for the total force
balance of a general four-bar linkage by redistributing its masses. The method is based on making the mass
centre of a mechanism stationary called as the method of linearly independent vectors. The conditions for the
total force balance for a four bar linkage are as follows:

m1d1 ¼ m2r2
a12

a2;B
; and h1 ¼ h02; m3d3 ¼ m2d2

a3;B

a2;B
; and h3 ¼ h2 þ p ð48Þ

where point B is the location of joint between links, 2 and 3, and all the link parameters are shown in Fig. 7. In
Eq. (48), there are nine unknowns, di; hi, and mi for i ¼ 1; 2; 3, and only four equations. If the parameters of
link 2 are prescribed then angles h1 and h3 can be found. This determines the radial lines on which the centres
of mass of links 1 and 3 must be placed. Therefore, only product of mass and distance, m1d1 and m3d3, may be
found.

To compare results obtained from the proposed method in this paper with that of the analytical method,
Eq. (48), parameters of link 2 are assumed to be its original. The parameters of the remaining two links, 1 and
3, form an eight-dimensional design vector, x, as x � [m11,m12,m13, l11,m31,m32,m33, l31]T. Considering three
cases: (1) mi = 1; (2) mi = 2; and (3) mi = 5 with li1 = l�i1 for the analysis, the problem of shaking force bal-
ancing is formed as follows:

Minimize z ¼ ~f sh ð49aÞ
Subject to mi1 þ mi2 þ mi3 ¼ mi; for i ¼ 1; 3 ð49bÞ

In case (1) the masses of links, 1 and 3, are kept same as those in the original mechanism. Similarly, in cases (2)
and (3), link masses are increased to twice and five times, respectively. Optimization tool box of MATLAB [34]
is used to solve the problem posed in Eq. (49). The optimized results for the point-masses, and the geometry of
links obtained from them are given in Table 3. Angles, hi, and mass–distance products, midi, for i ¼ 1; 3, are

Table 2
Equivalent point-masses of the normalized Hoeken’s mechanism

Link i 1 2 3

Point-mass, mo
i1 0.4910 6.2930 1.5372

Point-mass, mo
i2 0.2545 0.4035 0.1814

Point-mass, mo
i3 0.2545 0.4035 0.1814

Location of point-masses, lo
i1 0.6343 3.4479 1.7517

Table 3
Optimized values for point-masses and links geometries

Cases Link i Point-masses Total mass mi Centre mass location Mass–distance product midi

mi1 mi2 mi3 di hi (�)

(1) 1 �0.0619 0.5309 0.5309 1.000 0.3761 180.00 0.3760

3 �2.3466 1.4929 1.4929 1.900 10.6870 180.00 20.3064

(2) 1 0.2715 0.8643 0.8643 2.000 0.1880 180.00 0.3760

3 �6.4616 5.1308 5.1308 3.800 5.3438 180.00 20.3064

(3) 1 1.2715 1.8643 1.8643 5.000 0.0752 180.00 0.3760

3 �4.5616 7.0308 7.0308 9.500 2.1375 180.00 20.3064

Values using Berkof and Lowen conditions: m1d1 = 0.3762; m3d3 = 20.3060 and h1 = 180�; h3 = 180�.
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shown in the last two columns. The results obtained by the proposed formulation are in good agreement with
the analytical results which are shown in Table 3.

The normalized shaking forces in all cases are reduced to negligible in comparison to that in the original
mechanism, as shown in Table 4. As expected, the RMS values of the normalized shaking moment, the
input-torque, and bearing reactions in the joints increase with the link masses. For example, the shaking
moment increases by 38% over the corresponding values of the original mechanism in case (3). Similarly,
Table 4 shows increment in the bearing reactions also.

4.1.2. Optimization of shaking force and moment

The effect of force balancing on bearing reactions, input-torque, and the shaking moment in a family of
four-bar linkages is investigated by Lowen et al. [4]. They had shown that the bearing reactions, input-torque
as well as the shaking moment increase up to 50 percent in most of the case. This fact is also clear from the
results of the previous section. The conclusions of Lowen et al. [4] and other researchers suggest that only
force balancing is not effective, and the balancing of mechanism requires trade-off among various dynamic
quantities. In this paper, the optimality criteria proposed in Eq. (43) is used which combine both the shaking
force and shaking moment. The constraints on the design variables, namely, mi1;mi2;mi3, and li1, for i ¼ 1; 2; 3,
are depend on application.

In this study, two sets of constraints on the design variables are considered, namely, (a) total mass of each
link and the distances of point-masses from the link’s origin are constrained. Here negative values of the point-
masses are allowed; and (b) in addition to the constraints in (a), negative values of the point-masses are not
allowed. For the both problems, hi1; hi2, and hi3 are 0, 2p=3; 4p=3 and li2 = li3 = li1 are assigned as an equim-
omental conditions. Then design vector, x, consists of a total of 12 design variables, mij and li1 for i ¼ 1; 2; 3, is
defined as

x � ½m11;m12;m13; l11;m21;m22;m23; l21;m31;m32;m33; l31�T:

The optimization problem is then posed as

Minimize z ¼ w1
~f sh þ w2~nsh ð50aÞ

ðaÞ Subject to mo
i 6 ðmi1 þ mi2 þ mi3Þ 6 5mo

i ð50bÞ
0:5lo

i 6 li1 6 1:5lo
i ; for i ¼ 1; 2; 3 ð50cÞ

ðbÞ Subject to mo
i 6 ðmi1 þ mi2 þ mi3Þ 6 5mo

i ð50dÞ
0:5lo

i 6 li1 6 1:5lo
i ð50eÞ

mi1;mi2;mi3 P 0; for i ¼ 1; 2; 3 ð50fÞ

Choosing three set of weighting factors (w1,w2): (1,0), (0.5,0.5), and (0, 1), total six cases are investigated.
Table 5 shows the design vector obtained for each case. The geometry and inertial properties of the mechanism
for each case are obtained back from the design vector using Eqs. (19)–(22), and given in Table 6. Figs. 8 and 9
show a comparison to the dynamic quantities with those of the original mechanism. The figures clearly dem-
onstrates that cases, a(2) and b(2), are effective for the first and second sets of constraints, respectively. Table 7

Table 4
Comparison of the RMS values of dynamic quantities between the original and the force-balanced Hoeken’s mechanism

Mechanism Bearing reaction forces Input-torque
~s

Shaking force
~f sh

Shaking moment
~nsh~f 41

~f 12
~f 23

~f 43

Original 24.7783 24.6928 22.9319 23.0385 15.3173 11.5362 36.7785
Case (1) 24.4813 24.6928 22.9320 24.4812 15.3174 (00) 1.11E�5(�100) 40.2375 (09)
Case (2) 26.1312 26.3421 24.3354 26.1312 16.3560 (07) 1.11E�5(�100) 42.8985 (17)
Case (3) 31.1002 31.3095 28.7244 31.1002 19.4858 (27) 1.11E�5(�100) 50.8993 (38)

The value in parenthesis denotes percent increment over the corresponding values of the original mechanism in the columns.
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shows comparison to the RMS values of the normalized dynamic quantities occurring motion cycle with those
of the original mechanism. The following conclusions are accrued by comparison of the results given in Tables
5–7.

Magnitudes of the shaking force and shaking moment occurred during motion cycle are minimum when
equal weight is given to both the quantities as shown by bold numbers in Table 7.

Total mass of the mechanism is minimum or increase very little in cases a(1)–a(3), whereas it increases two-
fold or more in cases b(1)–b(3). This is because point-masses may take negative value in problem (a). This is
obtained at a cost of displacing the centres of masses of links far away from the designed link origins. For
example, in cases a(2) and b(2), the location of the mass centre of link 3, i.e., d3, is 5.3554 and 0.8759, respec-
tively, which are about 4.2 and 0.7 times higher than that of its original value 1.25.

It is not necessary that the point-masses are positives. The conditions, that a set of positive and negative
point-masses represent a realizable link, are the total mass and moment of inertia about axes through the

Table 5
Design vector for the balanced Hoken’s mechanism

Case: (w1,w2) Design vector, x

Case a(1): (1.0,0.0) �3:5246 2:3285 2:3718 0:9134 4:3784 1:3282 1:3968 1:7398 �2:9843 2:5052 2:3818 0:9667½ �T
Case a(2): (0.5,0.5) �4:8784 0:7227 5:1566 0:5886 5:2843 �1:3781 3:1938 1:7240 �5:1095 8:0046 �0:9951 0:8759½ �T
Case a(3): (0.0,1.0) 0:4910 0:2545 0:2545 0:6343 5:0594 0:7484 1:2922 1:7240 �2:9119 8:3848 �3:5729 0:8759½ �T
Case b(1): (1.0,0.0) 0 2:3350 2:6650 0:9514 5:9063 0:3106 0:8831 2:4240 0 4:9305 4:5695 2:6276½ �T
Case b(2): (0.5,0.5) 01:5990 3:4010 0:9514 4:6933 0 2:4067 1:7240 09:5000 0 0:8759½ �T
Case b(3): (0.0,1.0) 0:4910 0:2545 0:2545 0:6343 4:9665 0 2:1335 1:7240 0 9:5000 0 0:9368½ �T

Table 6
Geometry and moment of inertia of the balanced Hoken’s mechanism

Case Link, i Total link mass mi Centre mass location Moment of inertia Ii

di hi (�)

Case: a(1) 1 1.176 4.5642 180.36 0.9809
2 7.103 0.7388 358.87 21.5013
3 1.903 2.7582 178.87 1.7781

10.182

Case: a(2) 1 1.000 5.1222 206.16 0.3468
2 7.100 1.4330 317.86 21.1024
3 1.900 5.3554 137.86 1.4577

10.000

Case: a(3) 1 1.000 0.1500 0.00 0.4023
2 7.100 0.9874 353.35 21.1024
3 1.900 5.3666 117.18 1.4577

10.000

Case: b(1) 1 5.000 0.4788 186.52 4.5258
2 7.100 1.8206 354.66 41.7180
3 9.500 1.3166 176.23 65.5907

21.600

Case: b(2) 1 5.000 0.5608 211.97 4.5258
2 7.100 0.9870 329.15 21.1024
3 9.500 0.8759 120.00 7.2884

21.600

Case: b(3) 1 1.000 0.1500 0.00 0.4023
2 7.100 1.0478 334.65 21.1024
3 9.500 0.9368 120.00 8.3371

17.600
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centre of mass must be positive. Non-negativity of the total mass of each link is achieved by constraining it as
mo

i 6 ðmi1 þ mi2 þ mi3Þ 6 5mo
i . Non-zero moment of inertia are achieved by assuming, li2 = li3 = li1 and

restricting li1 as 0:5lo
i 6 li1 6 1:5lo

i .
The balanced geometry obtained in case a(1), which is only shaking force balancing as discussed in Section

4.1.1, satisfy the analytical conditions, Eq. (48). With the optimization method proposed, it is not necessary to
assume some parameters and calculate others. It optimizes distribution of masses of all the links.

4.2. Example 2: the carpet scraping machine mechanism

Dynamic analysis of the carpet scraping machine mechanism is shown in Section 3.2. Here the proposed
method is used to optimize its shaking force and shaking moment. Table 8 defines its geometry, masses,
and inertia of the normalized original mechanism. The shaking force and shaking moment of the mechanism
are obtained, using Eq. (41), as

fsh ¼ �ðf81 þ f83 þ f84Þ ð51Þ
nsh ¼ �ðn81 þ n83 þ n84 � aT

1BEf83 � aT
14Ef84 þ ne

1Þ ð52Þ

where ne
1 is driving torque applied to the link #1. Since all the joints in the mechanism are revolute,

n81 = n82 = n84 = 0. Based on the discussion in Section 3, mi1;mi2;mi3; and li1, for i ¼ 1; . . . ; 7, are chosen
as the design variables for the problem. The parameters, hi1; hi2, and hi3 are 0, 2p/3, 4p/3 and li2 = li3 = li1
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Fig. 8. Dynamic performance of the Hoeken’s mechanism, case (a) normalized driving torque, (b) normalized shaking force, (c)
normalized shaking moment to fixed point O1.
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Fig. 9. Dynamic performance of the Hoeken’s mechanism, case (b), (a) normalized driving torque, (b) normalized shaking force, (c)
normalized shaking moment to fixed point O1.

Table 7
Comparison of the RMS values of dynamic quantities between the original and the balanced Hoken’s mechanism

Case Bearing reactions Input-torque ~s Shaking force ~f sh Shaking moment ~nsh

~f 41
~f 12

~f 23
~f 43

Original mechanism 24.7783 24.6928 22.9319 23.0385 15.3173 11.5362 36.7785
Optimization problem (a)

Case: a(1) 6.2614 10.2671 5.8774 6.2615 3.9129 5.98E�5 10.2544
(�75) (�100) (�72)

Case: a(2) 4.5516 6.8703 3.9930 4.5518 2.1480 4.46E�4 3.4903

(�86) (�100) (�91)

Case: a(3) 9.5640 9.4375 5.3996 3.4008 3.7432 7.7835 0.6078
(�76) (�32) (�98)

Optimization problem (b)

Case: b(1) 30.1743 31.5209 27.7745 29.9766 18.8039 0.5212 47.9376
(23) (�95) (30)

Case: b(2) 7.7790 9.5746 6.1873 4.5747 3.4413 4.0489 4.2403

(�76) (�65) (�88)

Case: b(3) 10.1112 9.9867 6.5318 4.8559 3.9536 6.6909 4.1755
(�74) (�42) (�89)

The value in parenthesis denotes round-off percent increment over the corresponding value of the original mechanism.
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are assigned arbitrarily as an equimomental conditions. Hence, the 28-dimensional design vector, x, take form,
according Eq. (45), as

x � ½m11;m12;m13; l11; � � � ;m71;m72;m73; l71�T:
Constraining link masses, mi, between mo

i and 5mo
i , and the variable li1 between 0:5lo

i1 and 1:5lo
i1, the optimi-

zation problem for the scraping machine mechanism is posed as

Minimize z ¼ w1
~f sh þ w2~nsh ð53aÞ

Subject to mo
i 6 ðmi1 þ mi2 þ mi3Þ 6 5mo

i ð53bÞ
0:5lo

i 6 li1 6 1:5lo
i ; for i ¼ 1; . . . ; 7: ð53cÞ

The shaking force and shaking moment are normalized with respect to parameters of the first link. Moreover,
the point masses are allowed to take negative values. The whole algorithm is coded in the MATLAB environ-
ment to determine the time-dependent behaviour of the various relevant quantities, including the maximum
bearing forces and driving torque.

The results obtained by applying different weighting factors, w1 and w2, are given in Table 9. These weight-
ing factors are nothing but the importance given to different competing quantities. The values depend on the
application and generally can be considered equal to each other. Three cases are investigated using three sets
of the weighting factors, i.e., (w1, w2) = (1.0,0.0); (0.5,0.5); and (0.0,1.0). Fig. 10 shows a comparison to the
dynamic performances of the mechanism. The RMS values of the dynamic quantities are compared with those
corresponding values of the original mechanism in Table 10. The results show a significant improvement in the
dynamic performances compared with those of the original one. For example, a reduction of 79%, 82%, and
98% is observed in the RMS values of input-torque, shaking force and shaking moment, respectively in case
(2). The optimized total mass, its location, and moment of inertia of each link can be calculated from opti-
mized point-masses using Eqs. (19)–(22).

Table 8
Parameters of the normalized original scraping machine mechanism

Link i 1 2 3 4 5 6 7

Link length, aik 1 3.02 3.02 8.78 6.27 6.27 6.27
Link mass, mo

i 1 7.100 1.900 5.200 4.300 14.200 4.300
Centre of mass location, do

i 0.15 2.86 1.25 4.50 3.14 10.00 3.14
Centre of mass location, ho

i (�) 0 0 0 0 0 0 0
Moment of inertia, �Io

i 0.4023 84.4028 5.8299 143.6004 61.5979 2007.2 61.5979

O1O3 = 0.089 m @ 180�; O1O4 = 0.410 m @ 84.7�; and a12 = 0.038 m; mo
1 ¼ 0:3260 kg; x1 = 1 rad/s.

Table 9
Design vector of the balanced scraping machine mechanism

Case: (w1,w2) Design vector, x

Case (1):
(1.0,0.0)

[�9.0271 3.1794 6.8477 0.6480 3.0299 3.1281 1.7513 1.9080 �0.8209
13.2130 �9.5284 2.6033 �8.4529 6.9753 6.6780 4.7979 0.1514 1.0659
3.0828 3.5648 2.3972 6.9384 6.8620 8.0674 17.7147 �5.6340 �5.7872
5.5376]T

Case (2):
(0.5,0.5)

[�5.3548 �22.4369 28.7917 0.3592 �6.9162 4.9914 9.0249 1.7240 �70.8281
37.1001 43.2280 1.3079 22.0392 �6.4234 33.6626 2.8325 1.0194 �10.6993
13.9800 1.9142 7.8013 9.6599 �3.2613 5.9602 25.2464 �40.4415 19.4951
2.0326]T

Case (3):
(0.0,1.0)

[0.4910 0.2545 0.2545 0.6343 �8.9417 21.7354 �5.1980 1.7240 �37.5079
14.1236 29.2331 0.8922 0.2026 �4.1376 21.8940 2.7065 4.9895 4.6985 �
5.3880 5.6265 8.2713 9.8027 �3.8741 6.4858 26.5309 �19.9802 �2.2506 2.9904]T
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5. Conclusions

This paper presents a generic formulation for the optimization of shaking force and shaking moment of
single and multiloop planar mechanisms. The idea of equimomental system for a rigid body undergoing in
a plane motion using three point-masses is introduced. Salient features of the point-mass model are high-
lighted there. The dynamic equations of motion for a link of the planar mechanism are formulated systemat-
ically in the parameters related to the equimomental point-masses. The constrained equations of motion in
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Fig. 10. Dynamic performance of the carpet scraping machine mechanism: (a) normalized driving torque, (b) normalized shaking force,
(c) normalized shaking moment to fixed point O1.

Table 10
Comparison of the RMS values of dynamic quantities between the original and the balanced scraping machine mechanism

Case Input-torque, ~s Shaking force, ~f sh Shaking moment, ~nsh

Original 1192.30 182.40 413.50
Case: (1) 533.63 1.36 1337.60
w1 = 1.0; w2 = 0.0 (�55) (�99) (223)
Case: (2) 245.02 32.74 5.32

w1 = 0.5; w2 = 0.5 (�79) (�82) (�98)
Case: (3) 474.63 84.70 3.38
w1 = 0.0; w2 = 1.0 (�60) (�54) (�99)

The value in parenthesis denotes round-off percent increment over the corresponding value of the original mechanism.
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minimal number are obtained in the relative joint coordinates. Dimension of equations is reduced to the num-
ber of independent generalized coordinates of the open system obtained by the cut-joint approach. The for-
mulation leads to an optimization scheme for the mass distribution so that the dynamic performances, say,
shaking force and moment, driving torque fluctuations, and the bearing reactions are minimized. The valida-
tion of the proposed method is done by comparing the analytical results available for the force balancing. The
methodology is extended to the multiloop mechanism used in the carpet scraping machine. Total mass of the
mechanism remain minimum or increase very little when the equimomental point mass are allowed to take
negative. Trading off between the shaking force and shaking moment combine with equal weight to them
shows optimum balancing. A significant improvement over the original mechanism in all the dynamic perfor-
mances is obtained.

Appendix A. Derivation of equations of motion of a rigid body moving a plane

A set of three equimomental point-masses rigidly fixed in local frame OXY represents a rigid body, shown
by the broken closed curve, Fig. 11. The points are moving in the XY plane, where OXY is the fixed inertial
frame. Since the rigid body is represented as point masses, the equations of motion consist of only the New-
ton’s equations motion. For the three point masses, there are six-dof. However, the distances between them
are constants leading to three independent constraints. Hence, the effective dof is three. As a result, the system
can be represented by three independent generalized coordinates, namely, two components of position vector r

of the origin point O, and orientation a. Now, the equations of motion are derived in these minimal general-
ized coordinates. First, the Newton equations of the three points are given by

mi€xi ¼ fix; mi€yi ¼ fiy for i ¼ 1; 2; 3: ðA:1Þ–ðA:2Þ

The Cartesian coordinates in the global frame of each point mass are obtained form Fig. 11 as

xi ¼ rx þ li cosðhi þ aÞ; yi ¼ ry þ li sinðhi þ aÞ ðA:3Þ–ðA:4Þ

Differentiating Eqs. (A.3) and (A.4) twice w.r.t. time, one obtains

_xi ¼ _rx � li sinðhi þ aÞ _a; _yi ¼ _rx þ li cosðhi þ aÞ _a ðA:5Þ–ðA:6Þ

and

€xi ¼ €rx � li cosðhi þ aÞ _a2 � li sinðhi þ aÞ€a ðA:7Þ
€yi ¼ €rx � li sinðhi þ aÞ _a2 þ li cosðhi þ aÞ€a ðA:8Þ

m1

m3

θ2

l3

Y

X

O
m2

l1

l2

θ1

θ3

r

O X

Y

α

Fig. 11. A set of three point masses.
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Using Eqs. (A.4) and (A.5), the generalized twist of the system of three points is given by

t ¼ N _q ðA:9Þ

where t � ½tT
1 ; � � � ; tT

3 �
T in which ti � ½ _xi; _yi�T and _q � ½ _a; _rx; _ry �T. The 6 · 3 matrix, N, is as follows:

N �

�l1 sinðh1 þ aÞ 1 0

l1 cosðh1 þ aÞ 0 1

�l2 sinðh2 þ aÞ 1 0

l2 cosðh2 þ aÞ 0 1

�l3 sinðh3 þ aÞ 1 0

l1 cosðh3 þ aÞ 0 1

2
666666664

3
777777775

ðA:10Þ

The Newton equations of motion, Eqs. (A.1) and (A.2), for a point mass are now represented as

Mi_ti ¼ wi ðA:11Þ

where the 2 · 2 matrix, Mi, and 2-vector of wrench, wi, are defined by Mi �
mi 0
0 mi

� �
wi �

fix

fiy

� �
. The twist

rate, _ti, can be obtained from Eqs. (A.7) and (A.8) as

_ti �
€xi

€yi

� �
¼

€rx � li cosðhi þ aÞ _a2 � li sinðhi þ aÞ€a
€rx � li sinðhi þ aÞ _a2 þ li cosðhi þ aÞ€a

� �
ðA:12Þ

Next the equations of motion for the three point masses are expressed together as

M_t ¼ w ðA:13Þ

where the 6 · 6 generalized mass matrix, M � diag[M1, . . . ,M3], and the 6-vector of generalized wrench,
w � ½wT

1 ; � � � ;wT
3 �

T. Pre-multiplying the transpose of the natural orthogonal complement, N, to Eq. (A.10) gives
the minimal constrained equations of motion, namely,

NTM_t ¼ NTw ðA:14Þ

On substitution of the transpose of N from Eq. (A.10), the equations of motion are obtained asP
i

mil
2
i �

P
i

mili sinðhi þ aÞ
P

i
mili cosðhi þ aÞ

�
P

i
mili cosðhi þ aÞ

P
i

mi 0P
i

mili sinðhi þ aÞ 0
P

i
mi

2
66664

3
77775

€a

€rx

€ry

2
64

3
75

þ

0 0 0P
i

mili cosðhi þ aÞ 0 0P
i

mili sinðhi þ aÞ 0 0

2
6664

3
7775

_a

_rx

_ry

2
64

3
75 ¼

�
P

i
milifix sinðhi þ aÞ þ

P
i

milifiy cosðhi þ aÞP
i

fixP
i

fiy

2
66664

3
77775 ðA:15Þ

In Eq. (A.15), the right-hand side is the generalized forces along the three generalized coordinates, rx; ry;a. The
3-vectors, ½ _a; _rx; _ry �T and ½€a;€rx;€ry �T, are the first and second time derivatives of generalized coordinates,
respectively.

Appendix B. Comparison between two and three point-mass models

The dynamically equivalent system, called here as an equimomental system, of point-masses of a rigid link
moving in a plane requires at least two point-masses. The representation of each link by equimomental system
of two point-masses is referred as two point-mass model. Similarly, equimomental system of three point-
masses is called three point-mass model, and so on. Balancing of a mechanism using the three point-mass
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model is shown in Section 3, whereas two point-mass model is discussed in [28]. Note that each mass requires
three parameters, mij; lij, and hij to identify it, a total of 6 and 9 parameters are necessary to completely define
the equimomental system of 2 and 3 point-mass models, respectively. Representation of rigid link as a dynam-
ically equivalent system of point-masses, the point-mass parameters must satisfy the equimomental conditions,
Eqs. (1)–(4). The determination of these parameters is discussed in Section 2. Comparison of these models is
given in Table 11 and illustrated in Fig. 12.

To show effectiveness of the three point-mass model in comparison with that of the two point-mass model
in the balancing of mechanisms, the optimization problem is reformulated here using both the models. The
shaking force and shaking moment are computed using the same dynamic algorithm, as explained in Sections
3.1 and 3.2. Note that the matrices, Mi and Ci, are modified corresponding to the model chosen for the rep-
resentation of a rigid link.

Eqs. (23)–(26) are the equations of motion for the ith link in terms of its 3p point-mass parameters, namely,
mij; hij; lij, for j ¼ 1; . . . ; p, where p = 2 and 3 for two and three point-mass models, respectively. Now, all or
some of the point-mass parameters can be used as design variables based on their influence on the objective
function of an optimization problem. For example, as evident from Eq. (22), the angles, hij, do not influence
the moment of inertia, however, the distances, lij, do. Hence, the angles, hij, are excluded from the set of design
variables. In some research papers, namely, by Wiederrich and Roth [17], Lee and Cheng [23], and Chaudhary
and Saha [28], two point-mass model was considered to represent the mass and inertia of a link. They
assumed, hi1 = 0 and hi2 = p/2, amongst the six parameters mi1, mi2, hi1, hi2, li1, and li2. The remaining param-
eters were then considered as design variables. In this paper, instead, three-point mass model is proposed.

To compare the both models it is required that the design variables and constraints on them are considered
in same manner. The design variables for the two point-mass model are mij and lij for j ¼ 1; 2, where hi1 = 0
and hi2 = p/2 [28]. Similarly, for the three point-mass model, one may choose two parameters per link, i.e., mij

and lij for j ¼ 1; 2; 3, as design variables, and hi1 = 0; hi2 = 2p/3; and hi3 = 4p/3 to place the masses symmet-
rically. Note here that the number of design variables can be further reduced for the optimization. The four
parameters for each link, namely, mi1, mi2, mi3, and li1, are treated in this paper as design variables.

Using the same constraint bounds on the mass and the inertia of the links, the optimization problems can
be posed as

Minimize zðxÞ ¼ w1
~f sh þ w2~nsh ðB:1Þ

Table 11
Comparison between two and three point-mass models

Criterion Two point-mass Three point-mass

Point-mass parameters 6: Parameters per link 9: Parameters per link
mij, hij, lij, for j = 1, 2 mij, hij, lij, for j = 1,2,3

Determination of the parameters for given
link

Assume any two and compute remaining
four

Assume any five and compute remaining
four

Suitable choice for assumptions hi1 = 0 and hi2 = p/2 [23] hi1 = 0;hi2 = 2p/3; hi3 = 4p/3; and
li2 = li3 = li1

1il2il
1im

2π/3

3im

3il
1il

2il
1im

2im π/2 

2im

Fig. 12. Two and three point-mass models.
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For two point-mass model

Subject to mo
i 6 ðmi1 þ mi2Þ 6 5mo

i ðB:2Þ
0:25Io

i 6 ðmi1l2
i1 þ mi2l2

i2Þ ðB:3Þ

For three point-mass model

Subject to mo
i 6 ðmi1 þ mi2 þ mi3Þ 6 5mo

i ðB:4Þ
0:25Io

i 6 ðmi1l2
i1 þ mi2l2

i2 þ mi3l2
i3Þ ðB:5Þ

Examples 1 and 2 given in Section 4 are considered for analysis purpose. The optimization problem posed in
Eqs. (B.1)–(B.5) is solved using MATLAB optimization toolbox under the same tolerances for the termination
of the functions and the design variables. The RMS values of the dynamic quantities obtained using both the
models are compared in Table 12. With more number of point-masses, the optimization algorithm quickly
redistributes the link masses with better performances in both the examples. Hence, it is concluded that three
point-mass model is better to balance planar mechanisms. The analytical proof is beyond the scope of this
paper, and will be taken up as future studies.
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