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Recursive Kinematics and Inverse
Dynamics for a Planar 3R Parallel
Manipulator
We focus on the development of modular and recursive formulations for the inverse
dynamics of parallel architecture manipulators in this paper. The modular formulation of
mathematical models is attractive especially when existing sub-models may be assembled
to create different topologies, e.g., cooperative robotic systems. Recursive algorithms are
desirable from the viewpoint of simplicity and uniformity of computation. However, the
prominent features of parallel architecture manipulators-the multiple closed kinematic
loops, varying locations of actuation together with mixtures of active and passive joints-
have traditionally hindered the formulation of modular and recursive algorithms. In this
paper, the concept of the decoupled natural orthogonal complement (DeNOC) is com-
bined with the spatial parallelism of the robots of interest to develop an inverse dynamics
algorithm which is both recursive and modular. The various formulation stages in this
process are highlighted using the illustrative example of a 3R Planar Parallel Manipu-
lator. �DOI: 10.1115/1.2098890�
Introduction
The modular and recursive inverse dynamics formulation for

parallel architecture manipulators is the subject of this paper. The
modular formulation of mathematical models is attractive because
existing submodels may be assembled to create different topolo-
gies, e.g., cooperative robotic systems. Recursive algorithms are
desirable from the viewpoint of simplicity and uniformity of com-
putation, despite the ever-increasing complexity of mechanisms.
We also note that, prior to the dynamics computation stage, a
forward or inverse kinematics stage is often required. Hence, the
development of efficient recursive dynamics algorithms also ne-
cessitates the careful investigation of recursive kinematics algo-
rithms. However, the development of modular and recursive ki-
nematics and dynamics algorithms for parallel manipulator
architectures remains a challenging research problem.

The literature on mathematical modeling of manipulators has a
rich history spanning several decades. We will summarize some
critical aspects presently while referring the interested reader to
any number of books on the subject �1–5�, for details. Methods for
formulation of equations of motion �EOM� fall into two main
categories: �a� Euler-Lagrange and �b� Newton-Euler formula-
tions. Euler-Lagrange methods are commonly used in the robotics
community to obtain the equations of motion �EOM� of robotic
manipulators. Typically, such approaches use the joint-based rela-
tive coordinates as the configuration space. For serial chain ma-
nipulators, these form a minimal coordinate description and per-
mit a direct mapping to actuator coordinates. Newton-Euler �NE�
methods, on the other hand, typically favor the use of Cartesian
variables as configuration-space variables, and develop recursive
formulations from the free-body diagram of each single body. The
uncoupled governing equations are then assembled to obtain the
model of the entire system.

While efficient formulations exist for serial-chain and tree-
structured multibody systems, the adaptation of these methods to
the simulation of closed-chain linkages and parallel manipulators
is relatively more difficult. Such systems possess one or more
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kinematic loops, requiring the introduction of algebraic con-
straints, typically nonlinear, into the formulation. Considerable
work has been reported in the literature on the specialization of
the above methods to formulate the EOM of constrained mechani-
cal systems, while including both holonomic and nonholonomic
constraints. Parallel mechanisms and manipulators form a special
class of constrained mechanical systems where the multiple kine-
matic loops give rise to systems of nonlinear holonomic con-
straints; in the ensuing discussion we will focus on the develop-
ment of EOM of such systems.

Nonrecursive Newton-Lagrange Formulations. The dynam-
ics of constrained mechanical systems with closed loops using the
Newton-Lagrange approach is traditionally obtained by cutting
the closed loops to obtain various open loops and tree-structured
systems, and then writing a system of ordinary differential equa-
tions �ODEs� for the corresponding chains in their corresponding
generalized coordinates �6�. The solution to these equations are
required to satisfy additional algebraic equations guaranteeing the
closure of the cut-open loops. A Lagrange multiplier term is in-
troduced to represent the forces in the direction of the constraint
violation. The resulting formulation, often referred to as a descrip-
tor form, yields a usually simpler, albeit larger, system of index-3
differential algebraic equations �DAEs�.

Typical methods used to solve the forward and inverse dynam-
ics problems for such constrained systems cover a broad spec-
trum, namely,

• Direct elimination where the surplus variables are elimi-
nated directly, using the position-level algebraic constraints
to explicitly reduce index-3 DAE to an ODE in a minimal
set of generalized coordinates �conversion into Lagrange’s
equations of the second kind� �7�;

• Explicit Lagrange-multiplier computation together with the
unknown accelerations computed from the augmented
index-1 differential algebraic equation �DAE� formed by ap-
pending the differentiated acceleration level constraints to
the system equations �1,8�;

• Lagrange-multiplier approximation/penalty formulation,
where the Lagrange multipliers are estimated using a
compliance-based force law, based on the extent of con-
straint violation and assumed penalty factors �2,9�;

• Projection of dynamics onto the tangent space of the con-

straint manifold, where the constraint-reaction dynamics
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equations are taken into the orthogonal and tangent sub-
spaces of the vector space of the system generalized veloci-
ties. A family of choices exist for the projection, as surveyed
by García de Jalón and Bayo �2� and Shabana �5�.

Recursive Newton-Euler Formulations. Many variants of fast
and readily implementable recursive algorithms have been formu-
lated within the last two decades, principally within the robotics
community to overcome the limitations posed by the complexity
of the dynamics equations based on classic Lagrange approaches
�6�.

The first researchers to develop O�N� algorithms for inverse
dynamics for robotics used a Newton-Euler formulation of the
problem. Stepanenko and Vukobratovic �10� developed a recur-
sive NE method for human limb dynamics, while Orin et al. �11�
improved the efficiency of the recursive method by referring
forces and moments to local link coordinates for the real-time
control of a leg of a walking machine. Luh et al. �12� developed a
very efficient recursive Newton-Euler algorithm by referencing
most quantities to link coordinates; this is the most often cited.
Further gains have been made in the efficiency over the years, as
reported, for example, by Balafoutis et al. �13� and Goldenberg
and He �14�.

In multiloop mechanisms, the generalized coordinates �joint
variables� are no longer independent, since they are subject to the
typically nonlinear loop-closure constraints. The most common
method for dealing with kinematics is to cut the loop, introduce
Lagrange multipliers to substitute for the cut joints, and use a
recursive scheme for the open-chain system to obtain a recursive
algorithm.

Decoupled Natural Orthogonal Complement. The natural
orthogonal complement �NOC�, introduced in Angeles and Lee
�15�, belongs to the class of projection methods for dynamics
evaluation. Saha �16� showed a method for splitting the NOC of a
serial chain into two matrices, one diagonal and one lower block
diagonal, thus introducing the decoupled natural orthogonal
complement �DeNOC�. By doing so, Saha was able to exploit the
recursive nature of the DeNOC and apply the concept to model
simple serial manipulators. Further, although recursive kinematics
algorithms for serial chains have had a long history �10–12�, a
recursive algorithm for the forward kinematics of closed-chain
systems appeared in Saha and Schiehlen �17�. In this work, Saha
and Schiehlen �17� showed that the NOC of a parallel manipulator
may be split into three parts—one full, one block diagonal, and
one lower triangular, and proposed a recursive minimal-order for-
ward dynamics algorithm for parallel manipulators. Examples of
up to two degrees-of-freedom planar manipulators were included
and various physical interpretations were reported.

Background

Twists, Wrenches, and Equations of Motion. In this section,
some definitions and concepts associated with the formulation of
the kinematics and dynamics of articulated rigid body systems
coupled by lower kinematic pairs will be briefly reviewed. See
�18,19� for further details.

Figure 1 shows two rigid links connected by a kinematic pair.
The mass center of the ith link is at Ci while that of link i−1 is at
Ci−1. The axis of the ith pair is represented by a unit vector ei. We
attach a frame Fi with origin Oi and axes xi, yi, and zi, to link
�i−1� such that zi is along ei. The global inertial reference frame
F0 with axes x, y, and z is attached to the base of the manipulator,
and unless otherwise specified, all quantities will be represented in
this global frame in the balance of the paper. Further, we define,
the three-dimensional position vectors di from the Oi to the mass
center of link i and ri−1 from the mass center of link i−1 to Oi.

The six-dimensional twist and wrench vector associated with

link i, at its mass center Ci, are now defined
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ti = ��i

vi
� ; wi = �ni

fi
� �1�

where �, v, n, and f are three-dimensional angular velocity, linear
velocity, moment, and force vectors, respectively, associated with
link i and represented about Ci. The Newton-Euler equations for
link i are

ni = Ii�̇i + İi�i = Ii�̇i + �i � Ii�i

fi = miv̇i

where Ii is the 3�3 inertia tensor about Ci and mi is the mass of
link i. The above set, in matrix form, may be written as

�2�

or

wi = Miṫi + WiMiti �3�

For a multibody system with n rigid links coupled by kinematic
pairs, we may write

t = �t1

�
tn
	 ; w = �w1

�
wn

	 �4�

The resulting set of Newton-Euler equations for the entire uncon-
strained system is then cast in the form

w = Mṫ + WMt �5�

where

M = �M1 O O

O � O

O O Mn
	 ; W = �W1 O O

O � O

O O Wn
	 �6�

Kinematic Relations Between Two Bodies Coupled by
Lower Kinematic Pair. The twist of link i at Oi can be written
recursively in terms of the twist of link i−1 at Ci−1 as

t̃i = B̃i−1ti−1 + p̃i�̇i �7�

where

Bi−1 = � 1 O

− Ri−1 1
� �8�

p̃ =
ei

for revolute joint �9�

Fig. 1 Two bodies connected by a kinematic pair
i �
0
�
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p̃i = �0

ei
� for prismatic joint �10�

where Ri−1 is the cross product matrix of ri−1. Further, the twist of
link i about mass center Ci is

ti = Bit̃i; Bi = � 1 O

− Di 1
� �11�

where Di is the cross product matrix of di. Substituting the value
of t̃i from Eq. �7� in the above equation we obtain

ti = BiB̃i−1ti−1 + Bip̃i�̇i �12�
We introduce the notation

ti = Bi,i−1ti−1 + pi�̇i �13�
where

Bi,i−1 = � 1 O

− Ai 1
� �14�

pi = � ei

Diei
� for revolute joint �15�

pi = �0

ei
� for prismatic joint �16�

where Ai is the cross product matrix of �ri−1+di�. Matrix Bi,i−1
may be called the twist propagation matrix while pi, the twist
generator. The twist ti is thus the sum of twist ti−1 and the twist
generated at the joint i, both evaluated at Ci. Equation �13� is
recursive in nature and is in fact the forward recursion part of the
recursive Newton-Euler algorithm proposed by Luh et al. �12�.

Modeling of the 3R-Planar Platform Manipulator
Figure 2 shows the 3R planar platform manipulators with three

degrees of freedom �20�. For the sake of simplicity we restrict
ourselves to system that has: �1� only revolute joints, �2� identical
legs; and �3� a moving platform in the shape of an equilateral
triangle. The three-degrees-of-freedom �three-dof� planar manipu-
lator consists of three identical dyads, numbered I, II, and III
coupling the platform P with the base, such that their fixed pivots
lie on the vertices of an equilateral triangle, as well. The proximal
and the distal links of each dyad are numbered 1 and 2, respec-
tively. Joint 1 of each dyad is actuated. The centroidal moment of
inertia of each link about the axis normal to the xy plane is Ii, for
i=1,2. The mass of the platform is given by mP, its mass center
located at P, the centroid of the equilateral triangle, and the cen-

Fig. 2 3-DOF Planar parallel manipulator
troidal moment of inertia about an axis similarly oriented is IP.

Journal of Dynamic Systems, Measurement, and Control
We divide the manipulator into three serial chains, I, II, and III,
by dividing the rigid platform P into three parts such that the
operation point of the end effector of each open chain lies at point
P, the mass center of the platform P. Cutting the platform in this
manner is advantageous due to the following reasons:

• Torques may be applied to the joints that otherwise need to
be cut to open the chains.

• Joint friction may be accommodated directly for such joints.
• Cutting the links �platform� produces a more streamlined

recursive kinematic and dynamic modeling for parallel
manipulators.

The first two advantages are discussed in greater detail in Yiu
et al. �21�; we will discuss these issues in detail in the ensuing
analysis.

Recursive Forward Kinematics. The forward kinematics
problem for a parallel manipulator is defined as: Given the
actuated-joint angles, velocities, and accelerations, find the posi-
tion, twists, and twist rates of the platform and all the other links.

Position Analysis. The displacement analysis is a critical first
step and we adopt the approach proposed by Ma and Angeles �22�
to this end.

Velocity Analysis. Since the manipulator is planar, we use two-
dimensional position vectors, three-dimensional twist vector t
= �� ,v�T, and three-dimensional wrench vectors w= �n , f�T, where
� is the angular velocity, v is the two-dimensional velocity vector,
n is the angular moment, and f is the two-dimensional force vec-
tor. For each chain, we define position vectors di from the ith joint
axis to the mass center of link i ,ri from mass center of link i to
the �i+1�st joint axis, and ai=di+ri as shown in Fig. 2.

The twist of the end effector of any chain is given by Saha and
Schiehlen �17� as

tP = BP3t3 �17�
where

BP3 = � 1 0T

Er3 1
� ; E = �0 − 1

1 0
�

t3, the twist of the third link with respect to its mass center, is
computed recursively for each serial chain from its preceding link
as

t3 = B32t2 + p3�̇3 �18�

B32 = � 1 0T

E�r2 + d3� 1
� ; p3 = � 1

Ed3
�

where the 3�3 matrix B32 is the twist-propagation matrix and p3
is the twist generator, t2 is the twist of link 2 with respect to its

mass center; �̇3 is the relative rate of the third joint, while 0 is the
two-dimensional zero vector and 1 is the 2�2 identity matrix.

A useful relation is first introduced which will be exploited in
the ensuing analysis. Let a=bx+c, where a, b, and c are three-
dimensional vectors, while x is a scalar; we may determine the
value of the scalar as

x =
bT

bTb
�a − c� �19�

Substituting this value for x back in a=bx+c and rearranging
terms we may eliminate x from the equation to obtain a relation-
ship between a, b, and c alone as


1 −
bbT

bTb
�a = 
1 −

bbT

bTb
�c �20�

where 1 is the 3�3 identity matrix, which is the relation sought.

We employ this process to eliminate the unactuated joint veloci-
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ties from the recursive kinematic equations. Substituting t3 into
Eq. �17�, we obtain

tP = BP3�B32t2 + p3�̇3� �21�

The above equation is solved for �̇3

�̇3 =
p̃3

T

�3
�tP − BP2t2� �22�

where the three-dimensional vector p̃3 is defined as p̃3=BP3p3 and

�3= p̃3
Tp̃3. Therefore, when we finally substitute �̇3 into Eq. �21�

we obtain

�3tP = �3BP2t2 �23�

where �3=1− p̃3p̃3
T /�3 and the property BP3B32=BP2 has been

used. Again, the twist of link 2 is then computed recursively from
the twist of link 1 as

t2 = B21t1 + p2�̇2

B21 = � 1 0T

E�r1 + d2� 1
� ; p2 = � 1

Ed2
�

where t1 is the twist of link 1 with respect to its mass center, �̇2 is
the relative angular joint velocity of the second joint, 0 is the
two-dimensional zero vector, and 1 is the 2�2 identity matrix.
Substituting t2 into Eq. �23�, we obtain

�3tP = �3BP2�B21t1 + p2�̇2� �24�

Solving for �̇2 we obtain

�̇2 =
p̃2

T

�2
�tP − BP1t1� �25�

where p̃2=�3BP2p2 and �2= p̃2
Tp̃2. Substituting �̇2 into Eq. �24�

leads to

�2tP = �2BP1t1 �26�

where the 3�3 matrix �2 is defined as �2=�3− p̃2p̃2
T /�2 and the

properties BP2B21=BP1 and �3
T�3=�3 have been used. Noting

the similarity between Eqs. �23� and �26�, the kinematics relation-
ships may be written in generic form as

�itP = �iBP,i−1ti−1 �27�

where �i is evaluated recursively as

�i = �i+1 − p̃ip̃i
T/�i �28�

Finally, since joint 1 is actuated, substituting t1=p1�̇1 into Eq.

�26�, we can express the twist of the platform P in terms of �̇1 as

�2tP = �2BP1p1�̇1 �29�

This equation illustrates the well-known feature for parallel
chains. Note that �2 is a projection matrix and is thus singular.
Next, we write Eq. �29� for each open chain to obtain

KtP = �BP�̇ac

where K = ��2
I + �2

II + �2
III�:3 � 3

� = ��2
I �2

II�2
III�:3 � 9

B = diag�BP1
I ,BP1

II ,BP1
III�:9 � 9

P = diag�pI ,pII,pIII�:9 � 3
1 1 1
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�̇ac = ��̇1
I �1

II�1
III�T

where all dimensions have been stated for clarity. Finally when K
is nonsingular,2 we may solve for the end effector velocity in
terms of the actuated velocities as

tP = K−1�BP�̇ac �30�
The unactuated joint velocities of any chain may be now be com-
puted by substituting tP from Eq. �30� into Eq. �25� to yield

�̇2 =
p̃2

T

�2
�K−1�BP�̇ac − BP1p1�̇1� �31�

and substituting tP, t2, t1, and �̇2 into Eq. �22�

�̇3 =
p̃3

T

�3
�tP − BP2�B21t1 + p2�̇2��

=
p̃3

T

�3
�tP − BP1p1�̇1 − BP2p2�̇2�

=
p̃3

T

�3
��tP − BP1t1� − BP2p2

p̃2
T

�2
�tp − BP1t1��

=
p̃3

T

�3

1 −

1

�2
BP2p2p̃2

T��tP − BP1t1� �32�

which can be written as

�̇3 =
p̃3

T

�3
�2

T�K−1�BP�̇ac − BP1p1�̇1� �33�

where the 3�3 matrix �2 is defined as �2= �1−BP2p2p̃2
T /�2�T

and 1 is the 3�3 identity matrix.
We note that Eqs. �31� and �33� are general and applicable to

each open chain and that the bracketed term on the right hand side
of each equation is the same. This term can be written specifically
for each open chain as

��K−1�2 − 1�I �K−1�2�II �K−1�2�III�BP�̇ac

��K−1�2�I �K−1�2 − 1�II �K−1�2�III�BP�̇ac

��K−1�2�I �K−1�2�II �K−1�2 − 1�III�BP�̇ac

Thus the final relationship between the joint rates and actuated
joint rates is expressed in matrix form as

�̇ = �P̄I O O

O P̄II O

O O P̄III
	� LI

LII

LIII 	BP�̇ac �34�

where the 3�9 matrix P̄i is defined as P̄i

= �diag�p̃1
T /�1 , p̃2

T /�2 , p̃3
T�2

T /�3��i, while p̃1
i as explicitly p̃1

i

= �BP1p1�i for i= I, II, and III, and the 9�9 matrices L are defined
for each open chain as

LI = � 1 O O

�K−1�2 − 1�I �K−1�2�II �K−1�2�III

�K−1�2 − 1�I �K−1�2�II �K−1�2�III 	
LII = � O 1 O

�K−1�2�I �K−1�2 − 1�II �K−1�2�III

�K−1�2�I �K−1�2 − 1�II �K−1�2�III 	
2
See �23� for a more detailed discussion of the type of singularities.
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LIII = � O O 1

�K−1�2�I �K−1�2�II �K−1�2 − 1�III

�K−1�2�I �K−1�2�II �K−1�2 − 1�III 	
Equation �34� can be written in compact form as

�̇ = P̄LBP�̇ac �35�

where the 9�27 matrix P̄ is defined as P̄=diag�P̄I , P̄II , P̄III� and
the 27�9 matrix L is defined as L= ��LI�T �LII�T �LIII�T�T.
Note that, except for L, which is full but still retains a special
form, all other matrices are block-diagonal.

Acceleration Analysis. The acceleration terms, for any chain, by
differentiating Eq. �21� as

ṫP = ḂP3t3 + BP3�Ḃ32t2 + B32ṫ2 + ṗ3�̇3� + BP3p3�̈3 �36�

Adopting a process similar to the one discussed for the velocity

analysis, we may solve for the unactuated joint acceleration for �̈3
as

�̈3 =
p̃3

T

�3
�ṫP − ḂP3t3 − BP3�Ḃ32t2 + B32ṫ2 + ṗ3�̇3�� �37�

Substituting �̈3 back into Eq. �36�

�3ṫP = �3�ḂP3t3 + BP3�Ḃ32t2 + B32ṫ2 + ṗ3�̇3�� �38�

Now we obtain the expression for �̇3. Substituting t3 and �̇3 into
Eq. �38� and rearranging leads to

�3ṫP = �3BP2ṫ2 + �3ḂP2t2 − ��3�ḂP3p3 + BP3ṗ3�
p̃3

T

�3
�BP2t2

+ ��3�ḂP3p3 + BP3ṗ3�
p̃3

T

�3
�tP �39�

where the relation �ḂP3B32+BP3Ḃ32�= ḂP2 has been used. Time-
differentiating Eq. �23� we obtain:

�3ṫP = �3BP2ṫ2 + �3ḂP2t2 + �̇3BP2t2 − �̇3tP �40�

Comparing Eqs. �39� with �40�, we obtain

�̇3 = − �3�ḂP3p3 + BP3ṗ3�
p̃3

T

�3
�41�

or

�̇3 = − �3
p�̇3p̃3

T

�3
�42�

Now t2=B21t1+p2�̇2, and hence, ṫ2= Ḃ21t1+B21ṫ1+p2�̈2+ ṗ2�̇2.
Substituting t2 and ṫ2 in Eq. �40� we obtain

��̇3tP + �3ṫP� = �3BP2p2�̈2 + ��3BP2�Ḃ21t1 + B21ṫ1 + ṗ2�̇2�

+ �3ḂP2t2 + �̇3BP2t2� �43�

Solving the above equation for �̈2

�̈2 =
p̃2

T

�2
���̇3tP + �3ṫP� − ��3BP2�Ḃ21t1 + B21ṫ1 + ṗ2�̇2� + �3ḂP2t2

+ �̇3BP2t2�
 �44�

substituting �̈2 back into Eq. �43�,

�̄2��̇3tP + �3ṫp� = �̄2��3BP2�Ḃ21t1 + B21ṫ1 + ṗ2�̇2� + �3ḂP2t2

+ �̇3BP2t2� �45�

¯ ˜ ˜T
where �2=1−p2p2 /�2. However, we note that
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�̄2�3 = 
�3 −
p̃2p̃2

T

�2
� = �2

where the relation �3
T�3=�3 was used. Substituting �̄2�3=�2

and rearranging Eqs. �44� and �45� leads to

�̈2 =
p̃2

T

�2
��3�ṫP − a1� − a2� �46�

�2ṫP = �2a1 + �̄2a2 �47�

where a1=BP2�Ḃ21t1+B21ṫ1+ ṗ2�̇2�+ ḂP2t2 and a2=�̇3�BP2t2
− tP�.

Finally, adding Eq. �47� for each open chain and solving for ṫp

ṫP = K−1���2a1 + �̄2a2�I + ��2a1 + �̄2a2�II + ��2a1 + �̄2a2�III�
�48�

Summary of Forward Kinematics. The overall process of com-
puting the forward kinematics can be summarized as:

1. With the data, calculate B21, B32, B31, BP3, BP2, BP1, p1, p2,
and p3. For each chain, we calculate

p̃3 = BP3p3

�3 = p̃3
Tp̃3

�3 = �1 −
p̃3p̃3

T

�3
�

p̃2 = BP2p2

�2 = p̃2
Tp̃2

�2 = �3 −
p̃2p̃2

T

�2

2. Form matrices K, �, B, and P with values received from
each chain and calculate the platform twist tP from:

Ktp = �BP�̇ac

3. Obtain the twists and joint rates recursively for each chain,
using tP.

t1 = p1�̇1

�̇2 =
p̃2

T

�2
�tP − BP1t1�

t2 = B21t1 + p2�̇2

�̇3 =
p̃3

T

�3
�tP − BP2t2�

t3 = B32t2p3�̇3

Now calculate twist rates and joint accelerations for each

chain. First, calculate, i.e., Ḃ21, Ḃ32, Ḃ31, ḂP3, ḂP2, ḂP1, ṗ1,
ṗ2, and ṗ3 using joint velocities calculated above

ṫ1 = p1�̈1 + ṗ1�̇1

a1 = BP2�Ḃ21t1 + B21ṫ1 + ṗ2�̇2� + ḂP2t2

�̇3 = − �3�Ḃp3p3 + BP3ṗ3�
P̃3

T

�3
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a2 = �̇3�BP2t2 − tP�

�̄2 = 1 −
p̃2p̃T

�2

4. Using �2, �̄2, a1, and a2 from each chain calculate ṫP from

KṫP = ��2a1 + �̄2a2�I + ��2a1 + �̄2a2�II + ��2a1 + �̄2a2�III

5. Calculate joint accelerations and twist rates for each chain

�̈2 =
p̃2

T

�2
��3�ṫP − a1� − a2�

ṫ2 = Ḃ21t1 + B21ṫ1ṗ2�̇2 + p2�̈2

�̈3 =
p̃3

T

�3
�ṫP − ḂP3t3 − BP3�Ḃ32t2 + B32ṫ2 + ṗ3�̇3��

ṫ3 = B32ṫ2 + Ḃ32t2 + p3�̇3ṗ3�̈3

Inverse Dynamics. The inverse-dynamics problem is defined
as follows: Given the time-histories of all the system degrees-of-
freedom, compute the time histories of the controlling actuated
joint torques and forces. As in the case of the kinematics calcula-
tions, we again divide the platform into three parts and assign cut
sections of platform P to each open chain. Each cut section thus
becomes the “end effector” of the corresponding serial chain. Fur-
ther, we divide the mass of the platform �including any tool car-
ried by the platform� and assign its corresponding moment of
inertia, with respect to the mass center of the platform, to the “end
effector” of each chain. Any working wrench applied to the plat-
form has to be appropriately divided in a similar fashion. The
Newton-Euler equations for each open chain is, thus,

�49�

where M is the 9�9 mass matrix, t is the nine-dimensional twist
vector of the whole chain, wA is the wrench applied by the actua-
tors, w̄W= �0T ,0T , �wW�T�T, where wW is the corresponding work-
ing wrench applied at the “end effector” of the corresponding
chain, wg is the gravity wrench, and wC are the constraint
wrenches all these being nine-dimensional vectors. The friction
forces have been left out for the sake of simplicity but they can be
readily taken into account by means of dissipation function �18�.
In particular, the twist vector t may now be written as �16�.

t = NlNd�̇ �50�

where NlNd is the decoupled orthogonal complement and �̇ is the
joint-rate vector of the chain. For our manipulator, for each open
chain Eq. �50� is

�51�

where all terms have been previously defined. Now, the constraint
wrenches wC do not develop any power, and hence, tTwC is 0; by
virtue of Eq. �50�, wC lies in the nullspace of Nd

TNl
T. To eliminate

joint constraint wrenches, we premultiply both sides of Eq. �49�
by Nd

TNl
T, and noting that, for planar manipulators Ṁ=O

Nd
TNl

TMṫ = �̃ + Nd
TNl

TwG �52�

Time differentiating Eq. �50� and substituting the expression for ṫ

in Eq. �52�
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Nd
TNl

T�MNlNd�̈ + �MṄlNd + MNlṄd��̇� = �̃ + Nd
TNl

TwG �53�

where �̃=Nd
TNl

TwA is the joint torque vector for the chain and is
given by �̃= ��̃1 �̃2 �̃3 �T for each open chain. We can write the
above equation in compact form as

I�̈ + C�̇ = �̃ + �G �54�

where I=Nd
TNl

TMNlNd and C=Nd
TNl

T�MṄlNd+MNlṄd� , I being
the generalized inertia matrix of the chain and C the matrix of
coriolis and centrifugal forces.

Notice that the distribution of the working wrench between
chains is not important, as the torques evaluated at this stage are
projected onto the minimum actuated joint space in the step that
follows. We will discuss the case where the working wrench is
assumed to have been distributed evenly among the subsystems.

Projecting Joint Torques onto Minimal-Coordinate Space. As a
second step, we write the dynamics equation for each chain and
couple them with Lagrange multipliers, thereby obtaining the dy-
namics equation of the whole manipulator as

� �I�̈ + C�̇�I

�I�̈ + C�̇�II

�I�̈ + C�̇�III
	 = � �I

�II

�III 	 + ��G
I

�G
II

�G
III 	 − AT� �55�

where A is the loop-closure constraint Jacobian, which appears in
the constraints in the form

A�̇ = 0

Now, by defining �̇=J�̇ac, it is clear that J lies in the nullspace of
A and may be called the loop-closure orthogonal complement.
Premultiplying both sides of Eq. �55� by JT we obtain

JT� �I�̈ + C�̇ − �G�I

�I�̈ + C�̇ − �G�II

�I�̈ + C�̇ − �G�III
	 = �ac �56�

where �ac is the vector of actuator torques. Notice that the brack-
eted terms are nothing else than �̃ j, which can be found for each
open chain, for j= I, II, and III, recursively �16�. We may there-
fore write Eq. �56� as

Table 1 Dimension and inertia properties

Link i Li�m� mi�kg� Ii�Kg m2�

1,2,3 0.4 3.0 0.04
4,5,6 0.6 4.0 0.12

7 0.4 8.0 0.0817

Fig. 3 Three-DOF Planar parallel manipulator used in the
example
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JT� �̃ I

�̄II

�̃III 	 = �AC �57�

which is the relation sought, where J, given by Eq. �35�, may be
written in a slightly different form

J = P̄LP̃ �58�

where L = �
1 O O

�SI − 1� SII SIII

�SI − 1� SII SIII

O 1 O

SI �SII − 1� SIII

SI �SII − 1� SIII

O O 1

SI SII �SIII − 1�
I II III

	 ,

Fig. 4 Desired trajectory
S S �S − 1�

Journal of Dynamic Systems, Measurement, and Control
P̃ = �p̃1
I 0 0

0 p̄1
II 0

0 0 p̃1
III 	

and S j =K−1�2
j for j= I, II, and III. Substituting J into Eq. �57�

and rearranging we obtain the actuated torques as

�1
I = �p̃1

I �T��SI�T�p̂2
I + p̂3

I + p̂2
II + p̂3

II + p̂2
III + p̂3

III� + p̂1
I − p̂2

I − p̂3
I �

�1
II = �p̃1

II�T��SII�T�p̂2
I + p̂3

I + p̂2
II + p̂3

II + p̂2
III + p̂3

III� + p̂1
II − p̂2

II − p̂3
II�

�1
III = �p̄1

III�T��SIII�T�p̂2
I + p̂3

I + p̂2
II + p̂3

II + p̂2
III + p̂3

III� + p̂1
III − p̂2

III

− p̂3
III�

where p̂k
j = ��̃k�k−1p̃k /�k� j for k=1, 2, and 3 and j= I, II, and III,

where �0 and �1 are the three-dimensional identity matrices. But
p̃1

Tp̂1= �̃1 and hence the above equation set is written finally as

�ac = � �̃ 1
I + �p̃1

I �T��SI�T�p̄I + p̄II + p̄III� − p̄I�
�̃ 1

II + �p̃1
II�T��SII�T�p̄I + p̄II + p̄III� − p̄II�

�̃ 1
III + �p̃1

III�T��SIII�T�p̄I + p̄II + p̄III� − p̄III�
	

¯ ˆ ˆ

required driving torques
and
where p=p2+p3 for corresponding chains.
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Summary of Inverse Dynamics. To summarize the process of
computation of the inverse dynamics

1. From Eq. �52� it is clear that

�̃ = Nd
TNi

T�Mṫ + wG�
which can be calculated recursively for each chain as fol-
lows

�3 = �M3ṫ3 + w3
G�

�2 = �M2ṫ2 + w2
G� + B32

T �3

�1 = �M1ṫ1 + w1
G� + B21

T �2

�̃3 = p3
T�3

�̃2 = p2
T�2

�̃1 = p1
T�1

Now we calculate p̄

p̄ = �̃2
p̃2

�2
+ �̃3

�2p̄3

�3

2. Add all p̄ from each chain
3. Calculate actuated joint torques

Chain I:

� 1
I = �̃ 1

I + �p̄1
I �T��SI�T�p̄I + p̄II + p̄III� − p̄I�

Chain II:

� 1
II = �̃ 1

II + �p̃1
II�T��SII�T�p̄I + p̄II + p̄III� − p̄II�

Chain III:

� 1
III = �̃ 1

III + �p̃1
III�T��SIII�T�p̄I + p̄II + p̄III� − p̄III�

Example

Parameters and Initial Conditions. We use the same param-
eters for the 3R planar Stewart-Gough platform shown in Fig. 3 as
in Ma and Angeles �22�. The end effector, labeled 7, has the shape
of an equilateral triangle, with sides of length l7, links 1, 2, and 3
have a length l1, links 4, 5, and 6 have length l4, and the three
fixed revolute joints form an equilateral triangle with sides of
length l0. The prescribed motion drivers given by Ma and Angeles
�22� were

�1 =
1

3
� +

1

6

2�t

T
− sin

2�t

T
�

�2 =
4

3
� +

1

6

2�t

T
− sin

2�t

T
�

�3 =
11

6
� +

1

12

2�t

T
− sin

2�t

T
�

where T=3 s. However, since these initial conditions are not suf-
ficient to define a unique initial posture of the manipulator, we use
the initial configuration given by Geike and McPhee �24�

�1 =
1

3
� rad �4 = − 0.865 rad x7 = 0.728 m

�2 =
4

3
� rad �5 = − 2.102 rad y7 = 0.233 m

�3 =
11

� rad �6 = − 0.976 rad �7 = 3.916 rad

6
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The parameters of the manipulator are given in Table 1, gravity
acts in the −Y direction.

Results. We first perform the inverse dynamics in order to com-
pute a time history of actuation forces that would realize the pre-
scribed motions. Using the above parameters, the resulting torques
for the actuated joints 1, 2, and 3 were evaluated using the inverse
dynamics model discussed in this paper. The resulting set of
torques which realize the prescribed motions is shown in Fig. 4,
which tally with those given by Ma and Angeles �22�.

Conclusion
A modular and recursive inverse dynamics algorithm based on

decoupled natural orthogonal complement was presented for par-
allel architecture manipulators. In particular, these results were
illustrated in the context of the formulation and subsequent com-
putation of inverse dynamics for a planar 3R parallel manipulator.
The modularity is achieved by projecting the set of submodel
dynamics onto the space of feasible motions, taking advantage of
the decoupled natural orthogonal complement for this projection.
The recursive computation of DeNOC thus leads to the recursive
nature of the suggested algorithm.
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