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Denavit-Hartenberg
Parameterization of Euler Angles
Euler angles describe rotations of a rigid body in three-dimensional Cartesian space, as
can be obtained by, say, a spherical joint. The rotation carried out by a spherical joint
can also be expressed by using three intersecting revolute joints that can be described
using the popular Denavit-Hartenberg (DH) parameters. However, the motions of these
revolute joints do not necessarily correspond to any set of the Euler angles. This paper
attempts to correlate the Euler angles and DH parameters by introducing a concept of
DH parameterization of Euler angels. A systematic approach is presented in order to
obtain the DH parameters for any Euler angles set. This gives rise to the concept of
Euler-angle-joints (EAJs), which provide rotations equivalent to a particular set of Euler
angles. Such EAJs can be conveniently used for the modeling of multibody systems having
multiple-degrees-of-freedom joints. [DOI: 10.1115/1.4005467]
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1 Introduction

Rotation representation of a rigid body moving in a three-
dimensional Cartesian space is important for obtaining its kine-
matic and dynamic behavior. Selection of appropriate coordinates
is vital, particularly, with multiple-degree-of-freedom (multiple-
DOF) joints connecting two neighboring links or bodies. Many
schemes [1–3] are available to represent a rotation in space. The
representation using the rotation matrix of nine direction cosines is
one such scheme; however, it is not preferred by many as it uses
dependent coordinates. The use of Euler angles [1] is an alternative
choice. It has wide acceptability in the fields of aerospace, biome-
chanics, automobile, and others due to its independent representa-
tion. For spatial rotations, one may also use other minimal set
representations [2] like Bryant (or Cardan) angles, Rodriguez pa-
rameters, etc. It is worth mentioning that the fundamental differ-
ence between the Euler and Bryant angles lies in the fact that the
former represents a sequence of rotations about the same axis sepa-
rated with a rotation about a different axis, denoted as a–b–a,
whereas the latter represents the sequence of rotations about three
different axes, denoted as a–b–c. They are also commonly referred
to as symmetric and asymmetric sets of Euler angles in the litera-
ture [2]. For convenience, the name Euler angles in this work gen-
erally refers to both Euler and Bryant angles, hereafter. The use of
Euler parameters [3] is another popular choice and uses four pa-
rameters though the DOF of a rigid body rotation in space is three.

On the other hand, a multiple-DOF joint of a robotic system
connecting a pair of links is treated as a combination of one-DOF
joints, e.g., revolute or prismatic joints [4,5]. Robotic systems
such as humanoid, legged robot, robotic hand, etc. contain
multiple-DOF joints, say, a universal or spherical joint. A univer-
sal joint, also known as Hooke’s joint, is a combination of two
orthogonally intersecting revolute joints. Similarly, the kinematic
behavior of a spherical joint can be simulated by a combination of
three revolute joints whose axes intersect at a point. These joint
axes are typically represented using the well-known Denavit and
Hartenberg parameters [6]. It is pointed out here that the rotations
carried out by these intersecting revolute joints do not necessarily
represent the Euler angle rotations. Hence, it would be interesting
to find a correlation between them as both are extensively used in
literature for the dynamics of robotic and multibody systems.

In this paper, an attempt is made to correlate them by introduc-
ing the concept of DH parameterization of the Euler angles. A sys-
tematic method has been proposed to correlate single axis
rotations and the DH representation of the axes of rotations to
define the Euler angles of a spatial rotation provided by, say,
spherical joint. Such correlation has never been attempted before,
at least it is not found in the existing literature. Hence, this forms
the fundamental contribution of this paper leading to a novel con-
cept of Euler-angle-joints. EAJs have the specific advantages that
they (1) help in obtaining correlation between the Euler angles
and the DH parameters, (2) allow one to obtain Euler angle rota-
tions even though the configuration of a link connected by a joint
is defined using a set of DH parameters, and (3) make a unified
representation of multiple-DOF joints.

This paper is organized as follows: The DH parameterization of
Euler angles is presented in Sec. 2, and the concept of Euler-
angle-joints is introduced in Sec. 3. Important characteristic of
EAJs are shown in Sec. 4. Finally, conclusions are given in Sec. 5.

2 DH Parameterization of Euler Angles

A major challenge in identifying the Euler/Bryant angles using
DH parameters is that, under the DH parameter scheme, the vari-
able rotations always occur about Z axis, whereas the Euler angles
are defined by rotation about all the three axes, namely, X, Y, and
Z, as shown in Appendix A.1. In the definition of DH parameters
(Appendix A.2), (1) a variable rotation about the Z axis denotes the
joint angle h, and (2) a constant rotation about the X axis represents
the twist angle a. As a result, the first step towards the DH parame-
terization of the Euler angles is to represent any Euler angle rota-
tion with respect to Z or X axis only. More specifically, the
variable Euler angle rotation has to be always about the Z axis.

Hence, in this section, first each elementary rotation is obtained
by the rotation about the Z axis only. It is shown next that any two
composite rotations, say, about the Y followed by about the Z, can
be shown to be equal to a combination of elementary rotations
obtained. Similarly, any set of Euler angles can be obtained by
appropriate combination of an elementary rotation followed by a
composite rotation or vice versa.

2.1 Elementary Rotations. In the definition of DH parame-
ters as the variable rotation is about the Z axis, any elementary
rotation about the Z axis does not require additional transforma-
tion. On the other hand, elementary rotations about the X or Y
axis must be equivalently rotated about the Z axis. The concept is
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illustrated below with the elementary rotation about the Y axis as
shown in Fig. 1(a). In order to represent the same elementary rota-
tion using an equivalent rotation about the Z axis, the Z axis of
Fig. 1(a) has to be first brought parallel to the Y axis before the
desired rotation is applied. This can be done by rotating frame
O-XYZ about the X axis by �90�, as shown in Fig. 1(b). The new
frame is indicated with O-X1Y1Z1. The rotation is indicated with
QX(�90). The desired rotation by an angle h is now imparted about
the Z1 axis, as shown in Fig. 1(c), where the corresponding rota-
tion is indicated by QZ(h). The new frame is O-X2Y2Z2. Finally, to
take care of the initial rotation about the X axis by �90�, an oppo-
site rotation about the X2 axis is applied, which is indicated in
Fig. 1(d) by QX (90). The final frame is O-X0Y0Z0. The resultant of
the three elementary rotations is the desired rotation about the Y
axis, which is given by

QY ¼ Q�XQhQþX (1)

where for brevity, Qh � QZðhÞ;Q�X � QXð�90Þ;QþX � QXð90Þ are
used. Interestingly, Eq. (1) represents the rotation matrix for rota-
tion about the Y axis in terms of rotation matrices for rotation
about the X and Z axes. Hence, the matrix representation in Eq.
(1) will be referred to as the equivalent rotation matrix.

One can similarly find an equivalent rotation matrix for the ele-
mentary rotation about the X axis. Table 1 shows the equivalent
rotation matrix for all three elementary rotations.

2.2 Composite Rotations. Resultant of two elementary rota-
tions, say, first about the Y axis followed by about the Z axis, is
referred to here as the composite rotation YZ. The corresponding
rotation matrix is denoted with QYZ and can be obtained using the
equivalent rotations matrices QY and QZ, given in Table 1 as

QYZ ¼ QYQZ ¼ Q�XQh1
QþX

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Y

Qh2

z}|{Z

(2)

where Qh1
and Qh2

represent the rotations about the Z axis by
angles h1 and h2, and Q6X represents the rotation about the X axis
by 690. It is interesting to point out that the equivalent rotation
matrix QZY due to the sequence of rotations about the Z axis fol-
lowed by about the Y axis can be obtained by using the transpose
rule of the matrix multiplications, i.e.,

QZY ¼ QT
YZ ¼ Qh1

Q�XQh2
QþX (3)

where Qh1
actually represents QT

h2
ð¼ Q�h2

Þ in which -h2 is substi-

tuted by h1 as it is the first joint rotation. The expression for QZY
can also be verified independently using the equivalent rotations
matrices QZ and QY given in Table 1. The equivalent rotation mat-
rices for the other composite rotations can be similarly obtained,
as shown in Table 2.

2.3 Euler Angle Sets. The elementary and composite rota-
tions obtained in Sec. 2.1 and Sec. 2.2 form the foundation to
obtain the equivalent rotation matrices for different Euler angle
sets.

2.3.1 ZYZ Euler Angles. The equivalent rotation matrix for
the ZYZ Euler angles set can be obtained as a combination of the
equivalent rotation matrices due to elementary rotation about Z
and the composite rotation about YZ given in Table 1 and Table 2,
respectively. The resulting matrix is denoted as QZYZ, and given
by

QZYZ ¼ QZQYZ ¼ Qh1

z}|{Z

Q�XQh2
QþXQh3

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{YZ

(4)

Interestingly, Eq. (4) can also be obtained by combining the
equivalent rotation matrices due to composite rotations ZY and
the elementary rotation about the Z axis as

QZYZ ¼ QZYQZ ¼ Qh1
Q�XQh2

QþX

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{ZY

Qh3

z}|{Z

(5)

In Eq. (5), QZYZ is nothing but the one obtained in Eq. (4). There-
fore, Qabc is associative in nature provided the sequence of rota-
tions is maintained, i.e.,

Qabc ¼ QabQc ¼ QaQbc (6)

Fig. 1 Rotation about the Y axis

Table 1 Equivalent rotation matrices for elementary rotations

Elementary rotations Equivalent rotation matrix

Z axis QZ ¼ Qh
Y axis QY ¼ Q�XQhQþX
X axis QX ¼ QþZQþXQhQ�XQ�Z

QþZ�QZð90Þ;QþX�QXð90Þ;Qh�QZðhÞ;Q�X�QXð�90Þ; and Q�Z�QZð�90Þ:

Table 2 Equivalent rotation matrices for composite rotations

Composite rotation Equivalent rotation matrix Composite rotation Equivalent rotation matrix

ZX QZX ¼ Qh1
QþZQþXQh2

Q�XQ�Z ZY QZY ¼ Qh1
Q�XQh2

QþX
YX QYX ¼ Q�XQh1

QþZQþXQþZQh2
Q�XQ�Z YZ QYZ ¼ Q�XQh1

QþXQh2

XY QXY ¼ QþZQþXQh1
Q�ZQ�XQ�ZQh2

QþX XZ QXZ ¼ QþZQþXQh1
Q�XQ�ZQh2

QþZ � QZð90Þ;QþX � QXð90Þ;Qhi
� QZðhiÞ;Q�X � QXð�90Þ; and Q�Z � QZð�90Þ:
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2.3.2 XYZ Euler Angles. Next, the equivalent rotation matrix
for the XYZ Euler angles, also known as Bryant angles, is derived
as a combination of the equivalent rotation matrix QX and the
equivalent rotation matrix QYZ , obtained in Table 1 and Table 2,
respectively, i.e.,

QXYZ ¼ QXQYZ ¼ QþZQþXQh1
Q�XQ�Z

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{X

Q�XQh2
QþXQh3

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{YZ

(7)

Note that the rotation matrix Q�Z , representing the constant rota-
tion about the Z axis by �90�, in the middle of two constant rota-
tion matrices Q�X, i.e., Q�XQ�ZQ�X, calls for an additional set of
DH parameters, as the DH notations allows only variable rotation
about the Z axis. Interestingly, the term Q�XQ�ZQ�X is equiva-
lent to Q�ZQ�XQ�Z , as illustrated in Fig. 2. The same can be pro-
ven using matrix expressions as well. It is also true for any three
sequential rotations by 690, i.e., Qað690ÞQbð690ÞQað690Þ ¼Qbð690Þ
Qað690ÞQbð690Þ, where a and b are the rotations about the X, Y, or
Z axis. Hence, replacing the term Q�XQ�ZQ�X in Eq. (7) with
Q�ZQ�XQ�Z, one obtains

QXYZ ¼ QþZQþXQh1
Q�ZQ�XQ�ZQh2

QþXQh3
(8)

In Eq. (8), the fixed rotation Q�Z appears next to Qh1
, which rep-

resents a variable rotation about the Z axis. Hence, the two rota-
tions can be combined as one rotation about the Z axis by
(h1� 90)�. As a result, the requirement of an additional set of DH
parameters can be avoided. The equivalent rotation matrices for
all the twelve symmetric and asymmetric Euler angle sets were
developed, as reported in Table 3. They will be used in the subse-
quent section to evolve the concept of Euler-Angle-Joints.

3 Euler-Angles-Joints (EAJs)

As discussed earlier, many robotic systems consist of multiple-
DOF joints, which may be modeled as a combination of more
than one intersecting one-DOF joints. The axes of these joints are
commonly identified with DH parameters. For example, a spheri-
cal joint can be represented by three intersecting joints, axes of
which are described using the DH parameters. However, the rota-
tions about the intersecting axes do not necessarily provide the
same rotations as obtained by using any set of Euler angles. Now,
if the DH parameters of these intersecting revolute joint-axes are
assigned based on the equivalent rotation matrices obtained
in Table 3, one would actually obtain the Euler angle rotations.

Similarly, if the DH parameters of a universal joint, represented
with two intersecting revolute joints, are defined using the equiva-
lent rotation matrices obtained in Table 2, the joint rotations give
Euler angles. As these intersecting joints provide Euler angle rota-
tions, they are termed as Euler-Angle-Joints. Hence, the EAJs are
formally defined as The intersecting revolute joints whose axes
are identified using the definition of DH parameters such that the
resulting rotations are equivalent to the one described by a partic-
ular set of Euler angles. Such correlations are obtained here for
the first time and help in a unified representation of a spatial rota-
tion by spherical joint, a two-DOF rotation by universal joint, and
a one-DOF rotation by revolute joint. Hence, an algorithm devel-
oper can represent different rotations for kinematic and dynamic
analyses of multibody systems with utmost ease. In order to illus-
trate the concept of EAJs, they are first developed for two-DOF
rotations followed by the three-DOF spatial rotations.

3.1 EAJs for Two-DOF Rotations. It is worth noting that
for the two-DOF rotations, EAJs consisting of two intersecting
revolute joints are equivalent to Euler angles set with two varying
and one non-varying angles, and the non-varying angle is always
zero, i.e., 0�. For example, YZ EAJs correspond to Euler angle set
aYZ or YZa, where a can be the X, Y, or Z axis with 0� rotation
about the a axis. Hence, Qa is always the identity matrix, and the
rotation matrix QaYZ or QYZa is nothing but QYZ. In this section,
it will be shown how the EAJs can be developed to represent a
two-DOF universal joint using the equivalent rotation matrices
obtained in Table 2.

Figure 3 shows a universal joint that connects moving link #M
to a reference link #R. Two coordinate frames FM (OM-XMYMZM)

Fig. 2 Equivalent transformations

Table 3 Equivalent Rotation matrices for Euler angle sets

Euler angles Equivalent rotation matrix Euler angles Equivalent rotation matrix

ZXZ QZXZ ¼ Qh1
QþZQþXQh2

Q�XQ�ZQh3
ZXY QZXY ¼ Qh1

QþZQþXQh2
Q�ZQ�XQ�ZQh3

QþX
ZYZ QZYZ ¼ Qh1

Q�XQh2
QþXQh3

ZYX QZYX ¼ Qh1
Q�XQh2

QþZQþXQþZQh3
Q�XQ�Z

YXY QYXY ¼ Q�XQh1
QþZQþXQh2

Q�XQ�ZQh3
QþX YXZ QYXZ ¼ Q�XQh1

QþZQþXQþZQh2
Q�XQ�ZQh3

YZX QYZX ¼ Q�XQh1
QþXQh2

QþZQþXQh3
Q�XQ�Z YZY QYZY ¼ Q�XQh1

QþXQh2
Q�XQh3

QþX
XYX QXYX ¼ QþZQþXQh1

Q�ZQ�XQh2
QþXQþZQh3

Q�XQ�Z XYZ QXYZ ¼ QþZQþXQh1
Q�ZQ�XQ�ZQh2

QþXQh3

XZX QXZX ¼ QþZQþXQh1
Q�XQh2

QþXQh3
Q�XQ�Z XZY QXZY ¼ QþZQþXQh1

Q�XQ�ZQh2
Q�XQh3

QþX

QþZ � QZð90Þ;QþX � QXð90Þ;Qhi
� QZðhiÞ;Q�X � QXð�90Þ; and Q�Z � QZð�90Þ:

Fig. 3 A universal joint represented by two intersecting revo-
lute joints
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and FR (OR-XRYRZR) are rigidly attached to links #M and #R,
respectively. The rotation matrix between these frames can be
obtained using any two varying Euler angles. The universal joint
can also be described by using two intersecting revolute joints as
shown in Fig. 3. Joint 1 connects reference link #R to an imagi-
nary link #1, whereas Joint 2 connects imaginary link #1 with the
moving link #M. Now, in order to develop the EAJs representing
the rotations equivalent to two varying Euler angles, the DH pa-
rameters are extracted from the equivalent rotation matrices
obtained for the composite rotations in Sec. 2.2.

If YZ composite rotations are chosen, the DH parameters for
the YZ EAJs can be obtained from the equivalent rotation matrix
in Eq. (2), i.e., QYZ ¼ Q�XQh1

QþXQh2
, where Qhi

, for i¼ 1, 2,
represents the rotation matrix corresponding to the rotations about
the Z axis by angle hi, whereas Q6X represents the rotation matrix
corresponding to the rotation about the X axis by angle 690o.
Thus, QYZ is only represented in terms of the rotation matrices
representing the rotation about the X and Z axes only. Hence, hk,
for k¼ 1, 2, can be interpreted as the variable DH parameter or
the joint angle, whereas the rotation about the X axis, i.e., Q6X,
may be interpreted as the rotations due to the twist angle a. More-
over, in the definitions of DH parameters the rotation due to the
twist angle precedes the one due to the joint angle, as evident
from Fig. 9 in the Appendix. Therefore, the DH parameters for the
YZ EAJs can be extracted from the expression of the equivalent
rotation matrix QYZ as follows:

• The first two terms Q�XQh1
correspond to the twist angle

a1¼�90� and joint angle h1.
• The final two terms QþXQh2

represent the twist angle
a1¼ 90� and the joint angle h2.

The DH parameters for the YZ EAJs are listed in Table 4,
whereas the DH frames corresponding to the intersecting revolute
joints are shown in Fig. 4. The frames are assigned as follows:

• For a1¼�90�, axis Z1 is perpendicular to ZR, and it repre-
sents the joint axis of revolute Joint 1 connecting the imagi-
nary link #1 to the reference link #R.

• For a2¼ 90�, axis ZM is the obvious choice for the joint axis
of the second revolute joint, as ZM is perpendicular to Z1. Joint
2 connects the moving link #M to the imaginary link #1.

The rotation matrix QYZ for the YZ EAJs can be derived from
the DH parameters of Table 4. It is shown in the fourth row of
Table 5. Similarly, other EAJs were obtained for the two-DOF
rotations. They are listed in Table 5.

3.2 EAJs for Spatial Rotations. The Euler angles represent
rotation in three-dimensional Cartesian space. Hence, they are com-
monly used to represent a spatial rotation provided by a spherical
joint. Figure 5 shows a spherical joint that connects a moving link
#M to a reference link #R. The rotation between the frames FM and
FR can be represented by any Euler angles set. For example, if the
ZYZ set is used, one obtains the orientation matrix QZYZ given by
Eq. (A2) in the Appendix. For the spherical joint represented with
three intersecting joints as shown in Fig. 5, the same rotation matrix
can be obtained if the equivalent rotation matrix obtained in Eq. (4)
is used to define the DH parameters. The systematic development
of the ZYZ and XYZ EAJs will be presented next.

3.2.1 ZYZ-EAJs. The DH parameters for the ZYZ EAJs can
be extracted from Eq. (4), i.e., QZYZ ¼ Qh1

Q�XQh2
QþXQh3

, as
follows:

• First, the rotation matrix Qh1
ð� 1Qh1

, 1 being an identity ma-
trix) corresponds to the twist angle a1¼ 0 and the joint angle
of h1.

• The next set of rotation matrices Q�X and Qh2
correspond to

the twist angle a2¼�90� and the joint angle of h2.
• Finally, the rotation matrices QþX and Qh3

correspond to the
twist angle a3¼ 90� and the joint angle of h3.

The DH parameters thus obtained are listed in Table 6. The cor-
responding DH frames are shown in Fig. 6. They are assigned as
follows:

• For a1¼ 0�, axis Z1 is parallel to ZR. It represents the joint
axis of revolute Joint 1 connecting the imaginary link #1 to
the reference link #R.

• For a2¼�90�, axis Z2 is orthogonal to Z1. It represents the
joint axis of the revolute Joint 2 connecting the imaginary
link #2 to the imaginary link #1. Note that the axis Z2 is ini-
tially parallel to YR, as the second Euler angle rotation is
about the Y axis.

• For a3¼ 90�, the third joint axis is orthogonal to Z2 and par-
allel to ZM. It connects the link #M to the imaginary link #2.
The axis ZM is initially parallel to the axis ZR as the final
Euler angle rotation is about the Z axis.

Referring to Fig. 6, as the three revolute joints rotates, the frame
FM attached to #M will change its orientation with respect to the
frame FR attached to #R. Using the DH parameters in Table 6, the
rotation matrices Q1, Q2, and Q3, representing the orientation
between the intermediate frames are obtained from Eq. (A5) as

Q1 �
Ch1 �Sh1 0

Sh1 Ch1 0

0 0 1

2
64

3
75; Q2 �

Ch2 �Sh2 0

0 0 1

�Sh2 �Ch2 0

2
64

3
75; and

Q3 �
Ch3 �Sh3 0

0 0 �1

Sh3 Ch3 0

2
64

3
75 (9)

It is important to point out here that the matrices Q1, Q2, Q3 above
are different from those in Eq. (A1) obtained using the ZYZ Euler
angles. The matrix QZYZ (: Q1 Q2 Q3) providing the overall ori-
entation between #M and #R appears in the second row of Table 8.
The elements of QZYZ are nothing but those obtained for the ZYZ
Euler angle set in Eq. (A2). This proves that the three intersecting
revolute joints shown in Fig. 6 are equivalent to the spherical joint
whose rotations are denoted with ZYZ Euler angles. Hence, the
revolute joints in Fig. 6 are termed as ZYZ Euler-angle-joints.

3.2.2 XYZ-EAJs. In order to show how the EAJs evolve for
asymmetric Euler (or Bryant) angles, the XYZ set is obtained next
using Eq. (8) as follows:

• The first term in Eq. (8), QþZð� 1QþZÞ corresponds to the
twist angle a0¼ 0� and the joint angle h0¼ 90�.

Table 4 DH parameters for YZ EAJs

ak hk (JV)

1 �90 h1

2 90 h2

JV: Joint variable.

Fig. 4 Representation of DH frames for YZ EAJs
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• The terms QþX;Qh1
; and Q�Z correspond to the twist angle

a1¼ 90� and the net joint angle of (h1� 90�), respectively.
• Next, the terms Q�X;Q�Z; and Qh2

correspond to the twist
angle a2¼�90� and the joint angle of (h2� 90).

• Finally, the terms QþX and Qh3
correspond to the twist angle

a3¼ 90� and the net joint angle of h3, respectively.

The DH parameters for XYZ EAJs are tabulated in Table 7.
The corresponding frame assignments are shown in Fig. 7 and
explained below:

• For the constant terms a0¼ 0� and h0¼ 90�, the DH frame
O0R-X0RY0RZ0R is obtained from frame OR-XRYRZR by rotat-
ing OR-XRYRZR by 90� about ZR. Both the frames are rigidly
attached to the reference link #R.

• For a1¼ 90�, axis Z1 is perpendicular to Z0R, and it represents
the joint axis of revolute Joint 1. Moreover, for the joint angle
(h1� 90�), X1 is perpendicular to X0R initially.

• For a2¼�90�, axis Z2 is perpendicular to Z1, and it repre-
sents the joint axis of revolute Joint 2. The axis Z2 is parallel
to YR initially, as the second Euler angle rotation is about the
Y axis.

• Finally, for a3¼ 90� and the net joint angle of h3, the third
joint axis is perpendicular to Z2. As ZM is perpendicular to
both Z2 and X2, it is the obvious choice for the third joint
axis.

Using the DH parameters in Table 7 the rotation matrices
Q0ð¼ QþZÞ, Q1, Q2, and Q3 are obtained by using Eq. (A5) as

Table 5 Euler-angle-joints for representation of a universal joint

DH parameters

Euler
angle ak hk Equivalent EAJs

Rotation matrix using the
DH parameters of the EAJs

1 ZX 1 0 h1þ 90

QZX � Q1Q2Q�XZ �
C1 �S1C2 S1S2

S1 C1C2 �C1S2

0 S2 C2

2
4

3
52 90 h2

3 �90 �90

2 ZY 1 0 h1 QZY � Q1Q2QþX �
C1C2 �S1 C1S2

S1C2 C1 S1S2

�S2 0 C2

2
4

3
5

2 �90 h2

3 90 0

3 YX 1 �90 h1þ 90 QYX � Q1Q2Q�XZ �
C1 S1S2 S1C2

0 C2 �S2

�S1 C1S2 C1C2

2
4

3
5

2 90 h2þ 90
3 �90 �90

4 YZ 1 �90 h1 QYZ � Q1Q2 �
C1C2 �C1S2 S1

S2 C2 0

�S1C2 S1S2 C1

2
4

3
5

2 90 h2

5 XY 0 0 90 QXY � QþZQ1Q2QþX �
C2 0 S2

S1S2 C1 �S1C2

�C1S2 S1 C1C2

2
4

3
5

1 90 h1� 90
2 �90 h2� 90
3 90 0

6 XZ 0 0 90 QXZ � QþZQ1Q2 �
C2 �S2 0

C1S2 C1C2 �S1

S1S2 S1C2 C1

2
4

3
5

1 90 h1

2 �90 h2�90

Note: (1) Qk, for k¼ 1, 2, represents the rotation matrix associated with the kth set of DH parameters.
(2) QþX 5 QX(90), QþZ 5 QZ(90), Q�XZ 5 QX(�90)QZ(�90), and C(�):Cos(�) and S(�):Sin(�).
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QþZ �
0 �1 0

1 0 0

0 0 1

2
64

3
75; Q1 �

Sh1 Ch1 0

0 0 �1

�Ch1 Sh1 0

2
64

3
75;

Q2 �
Ch2 �Sh2 0

0 0 1

�Sh2 �Ch2 0

2
64

3
75; Q3 �

Ch3 �Sh3 0

0 0 �1

Sh3 Ch3 0

2
64

3
75

(10)

The overall rotation matrix between the frames FR and FM is then
obtained as QXYZ ¼ QþZQ1Q2Q3 and given in the eleventh row
of Table 8. It is worth mentioning here that while constructing
XYZ EAJs an addition constant set of DH parameters, other than
three regular sets, is required, as seen in Table 7. This results into
one additional constant orientation term QþZ at the beginning, as
evident form Eq. (10). Moreover, all the EAJs corresponding to
the Euler angle sets beginning with a rotation about X, e.g., XYX,
XYZ, XZY, require multiplication of constant rotation matrix
QþZ in the beginning. Similarly, the EAJs corresponding to all 12
sets of Euler angles are obtained and shown in Table 8.

It can be summarized that the concept of EAJs not only estab-
lishes correlation between the DH parameters and the Euler angles
but also facilitates the systematic use of the intersecting revolute
joints to describe the Euler angle rotations even though the config-
uration of the links are defined using the DH parameters. Such
correlations were never reported in the literature and, thus, form
one of the important contributions of this paper. Moreover, the
EAJs also helped in unified representation of multiple-DOF joints.

4 Characteristics of EAJs

In this section some key features of EAJs like the presence of
extended DH parameters and differential relations and some
issues like non-uniqueness and singularity are addressed.

4.1 Extended DH Parameters. While developing the con-
cept of EAJs, it was found that the definition of some of the EAJs
required an additional constant set of DH parameters other than
the regular sets corresponding to the DOF of the intersecting revo-
lute joints. These additional sets of the DH parameters are referred
to here as extended DH parameters. As a result, a constant rotation
matrix is required either in the beginning or at the end as evident
form Tables 5 and 8. Interestingly, the existence of extended DH
parameters and the corresponding constant rotation matrix
depends on the axes about which the Euler angles are defined.
This is summarized below.

(1) EAJs having first rotation about the Z or Y axis do not
require any constant rotation matrix in the beginning.

(2) If the first rotation is about the X axis, a constant rotation
matrix of QþZ is required in the beginning.

(3) The EAJs having final rotation about the Z axis do not
require any constant rotation at the end.

(4) If the final rotation is about the Y or X axis, it requires a
constant rotation matrix of QþX or Q�XZ at the end.

Table 9 shows the extended DH parameters and the resulting
requirement of matrix multiplications in the beginning or at the
end. From Table 9 it may be seen that the YZ EAJs do not require
any extended DH parameters and should be preferred for the rep-
resentation of a universal joint. Similarly, the symmetric EAJs
ZYZ and ZXZ and asymmetric EAJs YXZ are free from the
requirement of extended DH parameters. More specifically, only
three sets of DH parameters are required to define these EAJs.
Hence, one should use ZYZ and ZXZ EAJs to represent spatial
rotations if a symmetric set is chosen. On the other hand, YXZ
EAJs should be preferred if an asymmetric set is chosen.

4.2 Differential Relations. One of the important applications
of the spherical or universal joint representations using the EAJs
is the dynamic modeling and simulation of robotic and multibodyFig. 7 Representation of DH frames for XYZ EAJs

Table 7 DH parameters for XYZ EAJs

ak hk (JV)

0 0 90 (Constant)
1 90 h1�90
2 �90 h2�90
3 90 h3

JV: Joint variable.

Fig. 6 Representation of DH frames for ZYZ EAJs

Table 6 DH parameters for ZYZ EAJs

ak hk (JV)

1 0 h1

2 �90 h2

3 90 h3

JV: Joint variable.

Fig. 5 A spherical joint represented by three intersecting revo-
lute joints
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Table 8 Euler-angle-joints for representation of spherical joint

DH parameters

Euler
angle ak hk Equivalent EAJs

Rotation matrix using the
DH parameters of the EAJs

1 ZXZ 1 0 h1þ 90 QZXZ � Q1Q2Q3 �
�S1C2S3 þ C1C3 �S1C2C3 � C1S3 S1S2

C1C2S3 þ S1C3 C1C2C3 � S1S3 �C1S2

S2S3 S2C3 C2

2
64

3
75

2 90 h2

3 �90 h3� 90

2 ZYZ 1 0 h1 QZYZ � Q1Q2Q3 �
C1C2C3 � S1S3 �C1C2S3 � S1C3 C1S2

S1C2C3 þ C1S3 �S1C2S3 þ C1C3 S1S2

�S2C3 S2S3 C2

2
64

3
75

2 �90 h2

3 90 h3

3 ZXY 1 0 h1þ 90 QZXY � Q1Q2Q3QþX �
�S1S2S3 þ C1C3 �S1C2 S1S2C3 þ C1S3

C1S2S3 þ S1C3 C1C2 �C1S2C3 þ S1S3

�C2S3 S2 C2C3

2
64

3
75

2 90 h2� 90
3 �90 h3� 90
4 90 0

4 ZYX 1 0 h1 QZYX � Q1Q2Q3Q�XZ �
C1C2 C1S2S3 � S1C3 C1S2C3 þ S1S3

S1C2 S1S2S3 þ C1C3 S1S2C3 � C1S3

�S2 C2S3 C2C3

2
64

3
75

2 �90 h2þ 90
3 90 h3þ 90
4 �90 �90

5 YXY 1 �90 h1þ 90 QYXY � Q1Q2Q3QþX �
�S1C2S3 þ C1C3 S1S2 S1C2C3 þ C1S3

S2S3 C2 �S2C3

�C1C2S3 � S1C3 C1S2 C1C2C3 � S1S3

2
64

3
75

2 90 h2

3 �90 h3� 90
4 90 0

6 YZY 1 �90 h1 QYZY � Q1Q2Q3QþX �
C1C2C3 � S1S3 �C1S2 C1C2S3 þ S1C3

S2C3 C2 S2S3

�S1C2C3 � C1S3 S1S2 �S1C2S3 þ C1C3

2
64

3
75

2 90 h2

3 �90 h3

4 90 0

7 YXZ 1 �90 h1þ 90 QYXZ � Q1Q2Q3

S1S2S3 þ C1C3 S1S2C3 � C1S3 S1C2

C2S3 C2C3 �S2

C1S2S3 � S1C3 C1S2C3 þ S1S3 C1C2

2
64

3
75

2 90 h2þ 90
3 �90 h3� 90

8 YZX 1 �90 h1 QYZX � Q1Q2Q3Q�XZ �
C1C2 �C1S2C3 þ S1S3 C1S2S3 þ S1C3

S2 C2C3 �C2S3

�S1C2 S1S2C3 þ C1S3 �S1S2S3 þ C1C3

2
64

3
75

2 90 h2þ 90
3 90 h3

4 �90 �90
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systems. In this section, the differential relationship, mainly, the
relationship between angular velocities of the moving and refer-
ence links in terms of the joint rates of the EAJs is obtained. Re-
ferring to Fig. 6, angular velocity (x1) of the link #1 in terms of
the reference link #R is written as

x1 ¼ e1
_h1 (11)

where e1 is the unit vector along the axis of rotation of the first
joint, and _h1 is the rate of the Euler angle. Similarly the angular
velocities for the second and moving links, i.e., #2 and #M, with
respect to #R are given by

x2 ¼ x1 þ e2
_h2 ¼ e1

_h1 þ e2
_h2 (12)

xM ¼ x2 þ e3
_h3 ¼ e1

_h1 þ e2
_h2 þ e3

_h3 (13)

Equation (13) represents the angular velocity of the moving link
#M with respect to the reference link #R connected by EAJs and
can be represented in a compact form as

xM ¼ P _h; where P ¼ e1 e2 e3½ � and _h ¼ _h1
_h2

_h3

� �T
(14)

where P is the 3� 3 transformation matrix and _h is the three-
dimentional vector of rate of EAJs. The expression of P will vary
depending on the set of EAJs.

In this subsection expression of P is derived for the ZYZ EAJs.
The unit vector ei, for i¼ 1, 2, 3, in the ith frame, is given as
[ei]i¼ [0 0 1]T. Accordingly, ei in the moving frame FM, i.e.,
[ei]M, can be obtained as

½e3�M ¼
0

0

1

2
64
3
75; ½e2�M ¼ QT

3 ½e2�2¼
Sh3

Ch3

0

2
64

3
75; and

½e1�M ¼ QT
3 QT

2 ½e1�1 ¼
Sh2Ch3

�Sh2Sh3

Ch2

2
64

3
75

(15)

Table 9 Required extended DH parameters/constant matrix multiplication for the EAJs

Extended DH parameters/constant matrix multiplication

Not required Required at the beginning Required at the end Required at both the ends

EAJs with two rotations YZ XZ YX, ZX, ZY XY
EAJs with three rotations ZYZ, ZXZ, YXZ XYZ ZYX, YZX, ZXY, YXY, YZY XYX, XZX, XZY

Table 8. Continued

DH parameters

Euler
angle ak hk Equivalent EAJs

Rotation matrix using the
DH parameters of the EAJs

9 XYX 0 0 90 QXYX � QþZQ1Q2Q3Q�XZ �
C2 S2S3 S2C3

S1S2 �S1C2S3 þ C1C3 �S1C2C3 � C1S3

�C1S2 C1C2S3 þ S1C3 C1C2C3 � S1S3

2
64

3
75

1 90 h1� 90
2 �90 h2

3 90 h3þ 90
4 �90 �90

10 XZX 0 0 90 QXZX � QþZQ1Q2Q3Q�XZ �
C2 �S2C3 S2S3

C1S2 C1C2C3 � S1S3 �C1C2S3 � S1C3

S1S2 S1C2C3 þ C1S3 �S1C2S3 þ C1C3

2
64

3
75

1 90 h1

2 �90 h2

3 90 h3

4 �90 �90

11 XYZ 0 0 90 QXYZ � QþZQ1Q2Q3 �
C2C3 �C2S3 S2

S1S2C3 þ C1S3 �S1S2S3 þ C1C3 �S1C2

�C1S2C3 þ S1S3 C1S2S3 þ S1C3 C1C2

2
64

3
75

1 90 h1� 90
2 �90 h2� 90
3 90 h3

12 XZY 0 0 90 QXZY � QþZQ1Q2Q3QþX �
C2C3 �S2 C2S3

C1S2C3 þ S1S3 C1C2 C1S2S3 � S1C3

S1S2C3 � C1S3 S1C2 S1S2S3 þ C1C3

2
64

3
75

1 90 h1

2 �90 h2� 90
3 �90 h3

4 90 0

Note: (1) Qk, for k¼ 1, 2, 3, represents the rotation matrix associated with the kth set of DH parameters.
(2) QþX 5 QX(90), QþZ 5 QZ(90), Q�XZ 5 QX(�90)QZ(�90), and C(�):Cos(�) and S(�):Sin(�).
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where Q1, Q2, and Q3 were obtained in Eq. (9). Using Eqs. (14)
and (15), the expression for matrix P is written as

P ¼
Sh2Ch3 Sh3 0

�Sh2Sh3 Ch3 0

Ch2 0 1

2
4

3
5 (16)

Interestingly, the expression in Eq. (16) is nothing but the one
shown in Eq. (A4) for the ZYZ Euler angles. It is worth noting
that for any two moving links in a multibody system, Eq. (14)
should be interpreted between the link #k and its parent link
#(k�1) instead of #M and #R, respectively.

4.3 Non-Uniqueness. Non-uniqueness of a rotation represen-
tation using Euler angles is a well-known issue for a given rota-
tion matrix. It is not different with EAJs, as both lead to the same
rotation matrix. For a given rotation matrix Q, i.e.,

Q ¼
q11 q12 q13

q21 q22 q23

q31 q32 q33

2
4

3
5 (17)

the angles of the EAJs may be found in a manner similar to those
of Euler angles by comparing the elements of Q in Eq. (17) with
those of QZYZ in the second row of Table 8 as

Ch2 ¼ q33; Sh2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

33

q
(18)

Ch1 ¼
q13

Sh2

; Sh1 ¼
q23

Sh2

(19)

Ch3 ¼
�q31

Sh2

; Sh3 ¼
q32

Sh2

(20)

It is clear from Eq. (18), that there are two solutions for h2,
whereas for each value of h2, Eqs. (19) and (20) provide one solu-
tion. Hence, the problem of calculating angles of EAJs from the
given rotation matrix is non-unique.

4.4 Singularity. Singularity is an inherent problem with rep-
resentation of spatial rotations with three parameters [1] including
the EAJs. This is evident form Eqs. (19) and (20), where the
angles h1 and h3 cannot be solved if Sh2¼ 0. The same can be
checked form Eq. (16), where determinant of the transformation
matrix P vanishes. As a consequence, one cannot obtain _h from
Eq. (14) for a given x. This is also referred to as a phenomenon
called “Gimbal Lock” [7]. The condition occurs when the axis of
Joint 1 coincides with that of Joint 3. All the symmetric EAJs suf-
fer from singularity for h2¼ 0 or np, whereas all the asymmetric
EAJs are singular for h2¼ð2n� 1Þp=2. In reality, most of the
spherical joints have restricted motion, and areas of Gimbal Lock

can be kept outside the domain of movement of the joint. Detailed
discussion on the singularity of EAJs is beyond the scope of this
paper. However, one may use the singularity avoidance algorithm
developed for Euler angles [8,9] to avoid any singularity in EAJs.

5 Conclusions

This paper presents a novel concept of Euler-angle-joints by
introducing the DH parameterization of the well-known Euler
angles used to describe three-dimensional spatial rotation. Euler-
angle-joints are nothing but orthogonally intersecting revolute
joints whose axes are defined using the well-known DH parame-
ters. They are so connected by imaginary links of zero lengths and
masses that they represent a particular set of Euler angles. Hence,
the proposed concept not only establishes a correlation between
the DH parameters and the Euler angles but also facilitates the
systematic use of the intersecting revolute joints to describe the
Euler angle rotations even though the configurations of links are
defined using the DH parameters. Such correlations were never
reported in the literature and, thus, they form an important contri-
bution of this paper. While developing the EAJs, evolution of the
DH parameters for different rotation sequences of Euler angles
have been investigated. They are summarized in Table 9.

The concept of EAJs lends its utility in the unified representa-
tion of one-, two-, and three-DOF joints, i.e., revolute, universal,
and spherical, respectively. Such unification makes an algorithm
development for kinematic and dynamic analysis much simpler,
which was not possible with the original definition of the Euler
angles.

Appendix A

This section presents definitions of Euler angles and DH param-
eters using the notations used in this paper.

A.1 Euler Angles

According to Euler’s rotation theorem [1], any three-dimensional
spatial rotation can be described using three sequential angles of
rotations about three independent axes. These angles of rotation are
called Euler angles. Figures 8(a)–8(c) show the sequence of
rotation, given by (a) an angle h1 about the ZM axis, (b) an angle
h2 about the rotated YM axis, and (c) an angle h3 about the
current ZM axis, respectively. The frame FR (OR-XRYRZR) and FM

(OM-XMYMZM) denote the reference frame and moving frame,
respectively. The three angles h1, h2, and h3 are called the ZYZ
Euler angles as per the sequential rotations performed about ZM,
new YM, and new ZM. In a similar way, one can define all twelve
such sets of Euler angles [10].

If the elementary rotations about the ZM, new YM, and new ZM

axes are h1, h2, and h3, then the respective rotation matrices Q1,
Q2, and Q3 are given by

Fig. 8 ZYZ Euler angles
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Q1 �
Ch1 �Sh1 0

Sh1 Ch1 0

0 0 1

2
64

3
75; Q2 �

Ch2 0 Sh2

0 1 0

�Sh2 0 Ch2

2
64

3
75; and

Q3 �
Ch3 �Sh3 0

Sh3 Ch3 0

0 0 1

2
64

3
75 (A1)

The overall rotation matrix Q between frames FM and FR is then
obtained as

Q ¼ Q1Q2Q3

¼
Ch1Ch2Ch3 � Sh1Sh3 �Ch1Ch2Sh3 � Sh1Ch3 Ch1Sh2

Sh1Ch2Ch3 þ Ch1Sh3 �Sh1Ch2Sh3 þ Ch1Ch3 Sh1Sh2

�Sh2Ch3 Sh2Sh3 Ch2

2
4

3
5

(A2)

The differential relationship between the Euler angles, i.e., the
relation between rates of Euler angles and angular velocity of
frame FM with respect to frame FR, can be obtained using the
property ~x � QT _Q [1], where ~x is the skew-symmetric matrix
associated with the three-dimnesionl vector of angular velocity, as

x ¼ P _h (A3)

where the 3� 3 transformation matrix P and the three-
dimensional vector _h are given by

P ¼
Sh2Ch3 Sh3 0

�Sh2Sh3 Ch3 0

Ch2 0 1

2
4

3
5 and _h ¼

_h1
_h2
_h2

2
4

3
5 (A4)

The columns of the matrix P represent unit vectors along the Z, Y,
and Z axes in the moving frame FM.

A.2 Denavit-Hartenberg Parameters

In this section, the Denavit-Hartenberg notation, as adopted
from Khalil and Kleinfinger [11], is presented for completeness.
For that, a coordinate frame is attached to each link. The frame
Ok-XkYkZk, denoted by Fk, is rigidly attached to link #k, as shown
in Fig. 9. The joint k couples the links #(k�1) and #k. The axis Zk

represents the kth joint axis. Moreover, the origin of Fk, namely,
Ok is located at a point where the common normal to Zk and Zkþ1

intersects Zk, whereas the common normal defines the axis Xk.
Furthermore, the axis Yk is such that the axes Xk, Yk, and Zk form
a right-handed triad. The coordinate frame is referred to as a DH
frame. Note that the frame attached to the fixed link, i.e.,
O0-X0Y0Z0, can be chosen arbitrarily and hence one can choose
Z0 coincident with Z1. Once the link frames are established using
the above scheme, the position and the orientation between any
two frames, say, Fk�1 and Fk, can be specified using four parame-
ters known as DH parameters. These parameters are defined as

• twist angle (ak), the angle between Zk�1 and Zk about Xk�1

• link length (ak), the distance from Zk�1 to Zk along Xk�1

• joint offset (bk), the distance from Xk�1 to Xk along Zk
• joint angle (hk), the angle between Xk�1 and Xk about Zk

Depending on the type of joints, i.e., revolute or prismatic, hk or
bk is a variable quantity while the other parameters are constant.
Based on the definition of the above DH parameters, the 3� 3 ori-
entation matrix Qk defining the orientation of Fk with respect to
Fk�1 can be expressed [11] as

Qk � QXðakÞQZðhkÞ ¼
1 0 0

0 Cak �Sak

0 Sak Cak

2
64

3
75

Chk �Shk 0

Shk Chk 0

0 0 1

2
64

3
75

¼
Chk �Shk 0

ShkCak ChkCak �Sak

ShkSak ChkSak Cak

2
64

3
75 (A5)
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