

PROPRIETARY MATERIAL. © 2014, 2008 The McGraw-Hill Companies, Inc. All rights reserved. No part of this PowerPoint slide may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this PowerPoint slide, you are using it without permission.

A moving body \rightarrow Pose or Configuration

@ McGraw-Hill Education

Orientation Description

- 1. Direction cosine representation
- 2. Fixed-axes rotations
- 3. Euler angles representation
- 4. Single- and double-axes rotations
- 5. Euler parameters representation I will illustrate the first TWO only

@ McGraw-Hill Education

Direction Cosine Representation

 $\mathbf{w} = w_x \, \mathbf{x} + w_y \, \mathbf{y} + w_z \, \mathbf{z}$ $\dots (5.11c)$

Substitute eqs. (5.11a-c) into eq. (5.12)

$$\mathbf{p} = (p_u u_x + p_v v_x + p_w w_x) \mathbf{x} + (p_u u_y + p_v v_y + p_w w_y) \mathbf{y} + (p_u u_z + p_v v_z + p_w w_z) \mathbf{z} \qquad \dots (5.13)$$

$$p_x = u_x p_u + v_x p_v + w_x p_w$$
 ... (5.14a)

$$p_{y} = u_{y}p_{u} + v_{y}p_{v} + w_{y}p_{w} \qquad \dots (5.14b)$$

$$p_z = u_z p_u + v_z p_v + w_z p_w$$
 ... (5.14c)

 $[\mathbf{p}]_F = \mathbf{Q} [\mathbf{p}]_M \qquad \dots (5.15)$

$$[\mathbf{p}]_F = \mathbf{Q} [\mathbf{p}]_M$$

$$[\mathbf{p}]_{F} = \begin{bmatrix} p_{\chi} \\ p_{\chi} \\ p_{\chi} \end{bmatrix}, \ [\mathbf{p}]_{M} = \begin{bmatrix} p_{\mathcal{U}} \\ p_{\mathcal{V}} \\ p_{\mathcal{V}} \end{bmatrix}, \ \mathbf{Q} = \begin{bmatrix} u_{x} & v_{x} & w_{x} \\ u_{x} & v_{x} & w_{x} \\ u_{y} & y & y \\ u_{z} & v_{z} & w_{z} \end{bmatrix} = \begin{bmatrix} \mathbf{u}^{\mathrm{T}} \mathbf{x} & \mathbf{v}^{\mathrm{T}} \mathbf{x} & \mathbf{w}^{\mathrm{T}} \mathbf{x} \\ \mathbf{u}^{\mathrm{T}} \mathbf{y} & \mathbf{v}^{\mathrm{T}} \mathbf{y} & \mathbf{w}^{\mathrm{T}} \mathbf{y} \\ \mathbf{u}^{\mathrm{T}} \mathbf{z} & \mathbf{v}^{\mathrm{T}} \mathbf{z} & \mathbf{w}^{\mathrm{T}} \mathbf{z} \end{bmatrix}$$

... (5.16)
Orientation description 1

 $\mathbf{u}^{\mathrm{T}}\mathbf{u} = \mathbf{v}^{\mathrm{T}}\mathbf{v} = \mathbf{w}^{\mathrm{T}}\mathbf{w} = 1$, and $\mathbf{u}^{\mathrm{T}}\mathbf{v}(\equiv\mathbf{v}^{\mathrm{T}}\mathbf{u}) = \mathbf{u}^{\mathrm{T}}\mathbf{w}(\equiv\mathbf{w}^{\mathrm{T}}\mathbf{u}) = \mathbf{v}^{\mathrm{T}}\mathbf{w}(\equiv\mathbf{w}^{\mathrm{T}}\mathbf{v}) = 0 \quad \dots \quad (5.17)$

Q is called Orthogonal

Due to orthogonality

 $\mathbf{u} \times \mathbf{v} = \mathbf{w}, \quad \mathbf{v} \times \mathbf{w} = \mathbf{u}, \text{ and } \quad \mathbf{w} \times \mathbf{u} = \mathbf{v} \dots (5.18)$

$\mathbf{Q}^{T}\mathbf{Q} = \mathbf{Q}\mathbf{Q}^{T} = \mathbf{1}$; det (\mathbf{Q}) = 1; $\mathbf{Q}^{-1} = \mathbf{Q}^{T} \dots$ (5.19)

Example 5.6 Rotations [Elementary] (Fig. 5.13a)

$$\mathbf{Q}_{Z} \equiv \begin{bmatrix} C\alpha & -S\alpha & 0 \\ S\alpha & C\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \dots (5.21)$$

$$\mathbf{Q}_{Y} \equiv \begin{bmatrix} C\beta & 0 & S\beta \\ 0 & 1 & 0 \\ -S\beta & 0 & C\beta \end{bmatrix}; \quad \mathbf{Q}_{X} \equiv \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\gamma & -S\gamma \\ 0 & S\gamma & C\gamma \end{bmatrix}$$

... (5.22)

Non-commutative Property: An Illustration

Fig. 5.20 Successive rotation of a box about Z and Y-axes

Non-commutative Property (contd.)

Fig. 5.21 Successive rotation of a box about Y and Z-axes

Lecture 3 **Robot Kinematics (Ch. 5)** S.K. Saha Aug. 10, 2015 (M)@JRL301 (Rob. Tech.)

S K Saha **Copyrighted Material**

PROPRIETARY MATERIAL. © 2014, 2008 The McGraw-Hill Companies, Inc. All rights reserved. No part of this PowerPoint slide may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this PowerPoint slide, you are using it without permission.

Recap

- Orientation representations
 - Non-commutative
- Direction cosines: Has disadv. of 9 param.
- Fixed-axes (RPY) rotations (12 sets)

Homogeneous Transformation

Task: Point P is known in moving frame M. Find P in fixed frame F.

Fig. 5.23 Two coordinate frames

 $[\mathbf{p}]_F = [\mathbf{o}]_F + \mathbf{Q}[\mathbf{p}']_M$

$$p = o + p'$$
 ... (5.45)

٠

$$\begin{bmatrix} [\mathbf{p}]_F \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{Q} & [\mathbf{o}]_F \\ \mathbf{O}^T & 1 \end{bmatrix} \begin{bmatrix} [\mathbf{p'}]_M \\ 1 \end{bmatrix} \dots (5.47)$$

 $[\mathbf{p}]_F = \mathbf{T}[\mathbf{p'}]_M \qquad \dots (5.48)$

Homogenous Transformation

T: Homogenous transformation matrix (4×4)

$$\mathbf{T}^{\mathrm{T}}\mathbf{T} \neq \mathbf{1} \quad \text{or} \quad \mathbf{T}^{-1} \neq \mathbf{T}^{\mathrm{T}} \qquad \dots (5.49)$$
$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{Q}^{\mathrm{T}} & -\mathbf{Q}^{\mathrm{T}} & [\mathbf{0}]_{F} \\ \mathbf{0}^{\mathrm{T}} & 1 \end{bmatrix} \qquad \dots (5.50)$$

Example 5.10 Pure Translation

Example 5.11 Pure Rotation

... (5.52)

18

Non-commutative Property

Like rotation matrices homogeneous transformation matrices are non-commutative, i. e.,

 $\mathbf{T}_{A}\mathbf{T}_{B}\neq\mathbf{T}_{B}\mathbf{T}_{A}$

Denavit and Hartenberg (DH) Parameters

- Serial chain
- Two links connected by revolute or prismatic joint
 - Four parameters
 - Joint offset (b)
 - Joint angle (θ)
 - Link length (a)
 - Twist angle (α)

Fig. 5.27 Serial manipulator

- Joint axis *i*: Link *i-1* + link *i*
- Link *i*: Fixed to frame *i*+1 (Saha) / frame *i* (Craig)

• b_i (Joint offset): Length of the intersections of the common normals on the joint axis Z_i , i.e., O_i and O'_i . It is the relative position of links i - 1 and i. This is measured as the distance between X_i and X_{i+1} along

(a) The *i*th joint is revolute

 θ_i (Joint angle): Angle between the orthogonal projections of the common normals, X_i and X_{i+1} , to a plane normal to the joint axes Z_i . Rotation is positive when it is made counter clockwise. It is the relative angle between links i - 1 and i. This is measured as the angle between X_i and X_{i+1} about Z_i .

• a_i (Link length): Length between the O'_i and O_{i+1} . This is measured as the distance between the common normals to axes Z_i and Z_{i+1} along X_{i+1} .

(a) The *i*th joint is revolute

 α_i (Twist angle): Angle between the orthogonal projections of joint axes, Z_i and Z_{i+1} onto a plane normal to the common normal. This is measured as the angle between the axes, Z_i and Z_{i+1} , about axis X_i + 1 to be taken positive when rotation is made counter clockwise.

(a) The *i*th joint is revolute

Fig. 5.28 (a) The *i*th joint is revolute

• Translation along Z_i

$$\mathbf{T}_{b} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & b_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

... (5.60b)

• Rotation about Z_i

$$\mathbf{T}_{\theta} = \begin{bmatrix} C\theta_{i} & -S\theta_{i} & 0 & 0 \\ S\theta_{i} & C\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Translation along X_{i+1}

$$\mathbf{T}_{a} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Rotation about X_{i+1}

$$\mathbf{T}_{\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C\alpha_{i} & -S\alpha_{i} & 0 \\ 0 & S\alpha_{i} & C\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

... (5.60d)

• Total transformation from Frame *i* to Frame *i*+1

$$\mathbf{T}_i = \mathbf{T}_b \mathbf{T}_{\theta} \mathbf{T}_a \mathbf{T}_{\alpha} \qquad \dots (5.61a)$$

Do it yourself!

... (5.61b)

Spherical-type Arm

• DH-parameters

Link	b_i	$ heta_i$	a_i	$lpha_i$
1			•	
2	Fill-up the DH parameters			
3	_			

Fig. 5.32 A spherical arm

PUMA 560

i	Variable DH		Constant DH	
	b_i	$ heta_i$	a_i	$lpha_i$
1	0	θ_{l}	0	-π/2
2	0	θ_2	a_2	0
3	<i>B</i> ₃	θ_3	a_3	-π/2
4	b_4	$ heta_4$	0	π/2
5	0	θ_5	0	-π/2
6	0	θ_6	0	0

Fig. 5.35 PUMA 560 and its frames

PROPRIETARY MATERIAL. © 2014, 2008 The McGraw-Hill Companies, Inc. All rights reserved. No part of this PowerPoint slide may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this PowerPoint slide, you are using it without permission.

@ McGraw-Hill Education

Forward and Inverse Kinematics

@ McGraw-Hill Education

Three-link Planar Arm

• DH-parameters

Link	b_i	$ heta_i$	a_i	α_i
1			1	
2	Fill-up the DH			
3				

• Frame transformations (Homogeneous)

Fig. 5.29 A three-link planar arm

```
, for i=1,2,3
```

DH Parameters of Articulated Arm

Link	b_i	Θ_i	a_i	α_i
1	0	$\theta_1(JV)$	0	$-\pi/2$
2	0	$\theta_2(JV)$	a_2	0
3	0	$\theta_3(JV)$	a_3	0

Fig. 5.29 An articulated arm

Matrices for Articulated Arm

$$\mathbf{T}_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{T}_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \mathbf{T}_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & a_{3}c_{3} \\ s_{3} & c_{3} & 0 & a_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \textbf{MATLAB}$$

$$\mathbf{T} = \begin{bmatrix} c_1 c_{23} & -c_1 s_{23} & -s_1 & c_1 (a_2 c_2 + a_3 c_{23}) \\ s_1 c_{23} & -s_1 s_{23} & c_1 & s_1 (a_2 c_2 + a_3 c_{23}) \\ -s_{23} & -c_{23} & 0 & -(a_2 s_2 + a_3 s_{23}) \\ 0 & 0 & 0 & 1 \end{bmatrix} .$$
(6.11)

Inverse Kinematics

- Unlike Forward Kinematics, general solutions are not possible.
- Several architectures are to be solved differently.

@ McGraw-Hill Education

Inverse Kinematics of 3-DOF RRR Arm

$$\varphi = \theta_1 + \theta_2 + \theta_3 \dots (6.18a)$$

$$p_x = a_1c_1 + a_2 c_{12} + a_3c_{123}$$

$$\dots (6.18b)$$

$$p_y = a_1s_1 + a_2 s_{12} + a_3s_{123}$$

$$\dots (6.18c)$$

End-effector, $P(p_x, p_y)$

$$Y_1$$

$$Y_1$$

$$Y_2$$

$$Y_2$$

$$Y_2$$

$$Wrist, W(w_x, w_y)$$

$$Y_2$$

$$Wrist, W(w_x, w_y)$$

$$Y_2$$

$$Wrist, W(w_x, w_y)$$

$$Y_1$$

$$Y_2$$

$$Y_2$$

$$Y_2$$

$$Y_2$$

$$Y_1$$

$$Y_2$$

Fig. 6.3 Kinematics of a three-link planar arm

$$w_{x} = p_{x} - a_{3}c \ \varphi = a_{1}c_{1} + a_{2}c_{12} \dots (6.19a)$$

$$w_{y} = p_{y} - a_{3}s \ \varphi = a_{1}s_{1} + a_{2}s_{12} \dots (6.19b)$$

@ McGraw-Hill Education

$$w_{x}^{2} + w_{y}^{2} = a_{1}^{2} + a_{2}^{2} + 2 a_{1}a_{2}c_{2} \qquad \dots (6.20a)$$

$$c_{2} = \frac{w_{1}^{2} + w_{2}^{2} - a_{1}^{2} - a_{2}^{2}}{2a_{1}a_{2}} \qquad s_{2} = \pm \sqrt{1 - c_{2}^{2}} \qquad \dots (6.20b,c)$$

$$\theta_{2} = \operatorname{atan2}(s_{2}, c_{2}) \qquad \dots (6.21)$$

$$w_{x} = (a_{1} + a_{2}c_{2})c_{1} - a_{2}s_{1}s_{2} \qquad \dots (6.22a)$$

$$w_{y} = (a_{1} + a_{2}c_{2})s_{1} + a_{2}c_{1}s_{2} \qquad \dots (6.22b)$$

$$s_{1} = \frac{(a_{1} + a_{2}c_{2})w_{y} - a_{2}s_{2}w_{x}}{\Delta} \qquad c_{1} = \frac{(a_{1} + a_{2}c_{2})w_{x} + a_{2}s_{2}w_{y}}{\Delta} \qquad \dots (6.23a,b)$$

$$\theta_1 = \operatorname{atan2}(s_1, c_1)$$

... (6.23c)

...(6.24)

$$\theta_3 = \varphi - \theta_1 - \theta_2$$

Numerical Example

• An RRR planar arm (Example 6.15). Input

where $\phi = 60^{\circ}$, and $a_1 = a_2 = 2$ units, and $a_3 = 1$ unit.

Do it yourself \rightarrow Verify using <u>RoboAnalyzer</u>

Using eqs. (6.13b-c),		$c_2 = 0.866$, and $s_2 = 0.5$,		
		$\theta_2 = 30^{\circ}$		
Next, from eqs. (6.	16a-b),	$s_1 = 0$, and $c_1 = 0.866$.		
Finally, from eq. (6.17),		$\theta_I = 0^o$.		Prograd
		$\theta_3 = 30^o$.		am
Therefore	$\theta_1 = 0^o \ \theta_2 = 30$	$\theta_3 = 30$)	(6.30b)

The positive values of s_2 was used in evaluating $\theta_2 = 30^{\circ}$.

The use of negative value would result in :

 $\theta_1 = 30^{\circ} \theta_2 = -30^{\circ}$, and $\theta_3 = 60^{\circ}$...(6.30c)

Watch

 Forward and Inverse Kinematics: Watch 3/3 of IGNOU Lectures [29min]

https://www.youtube.com/watch?v=duKD8cvtBTI

 For more clarity: Watch 12 of Addis Ababa Lectures [77 min]

[https://www.youtube.com/watch?v=NXWzk1toze4

 Robotics (13 of Addis Ababa Lectures): Inverse Kinematics [82 min]

https://www.youtube.com/watch?v=uIP3YiJLiEM

. . (6.86)

Velocity Analysis

 $- \cdot -$

Jacobian maps joint rates into end-effector's velocities. It depends on the manipulator configuration.

twistof end - effector :
$$\mathbf{t}_{e} \equiv \begin{bmatrix} \boldsymbol{\omega}_{e} \\ \mathbf{v}_{e} \end{bmatrix}$$
; Joint rates : $\dot{\boldsymbol{\theta}} = \begin{bmatrix} \theta_{1} \\ \vdots \\ \dot{\theta}_{n} \end{bmatrix}$

$$\mathbf{t}_{\mathbf{e}} = \mathbf{J}\dot{\mathbf{\Theta}} \quad \text{where } \mathbf{J} = \begin{bmatrix} \mathbf{j}_1 & \mathbf{j}_2 & \cdots & \mathbf{j}_n \end{bmatrix} \text{ and}$$
$$\mathbf{J} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \\ \mathbf{e}_1 \times \mathbf{a}_{1e} & \mathbf{e}_2 \times \mathbf{a}_{2e} & \cdots & \mathbf{e}_n \times \mathbf{a}_{ne} \end{bmatrix}$$

$$\mathbf{j}_{i} \equiv \begin{bmatrix} \mathbf{e}_{i} \\ \mathbf{e}_{i} \times \mathbf{a}_{ie} \end{bmatrix}, \text{ if Joint } i \text{ is revolute } \mathbf{j}_{i} \equiv \begin{bmatrix} \mathbf{0} \\ \mathbf{e}_{i} \times \mathbf{a}_{ie} \end{bmatrix}, \text{ if Joint } i \text{ is prismatic}$$

@ McGraw-Hill Education

Jacobian of a 2-link Planar Arm

$$\mathbf{J} = \begin{bmatrix} \mathbf{e}_1 \times \mathbf{a}_{1e} & \mathbf{e}_2 \times \mathbf{a}_{2e} \end{bmatrix}$$

where $\mathbf{e}_1 \equiv \mathbf{e}_2 \equiv \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^t$

$$\mathbf{a}_{1e} \equiv \mathbf{a}_1 + \mathbf{a}_2$$

$$\equiv [a_1c_1 + a_2c_{12} \quad a_1s_1 + a_2s_{12} \quad 0]^T$$

$$\mathbf{a}_{2e} \equiv \mathbf{a}_2$$

$$\equiv [a_2c_{12} \quad a_2s_{12} \quad 0]^T$$

Hence,
$$\mathbf{J} = \begin{bmatrix} -a_1 s_1 - a_2 s_{12} & -a_2 s_{12} \\ a_1 c_1 + a_2 c_{12} & a_2 c_{12} \end{bmatrix}$$

Example: Singularity of 2-link RR Arm

$$\mathbf{J} \equiv \begin{bmatrix} -a_1 s_1 - a_2 s_{12} & -a_2 s_{12} \\ a_1 c_1 + a_2 c_{12} & a_2 c_{12} \end{bmatrix} \qquad \theta_2 = 0 \text{ or } \pi$$

Figure 7.9 Singular configurations of a two-link planar arm

@ McGraw-Hill Education

PROPRIETARY MATERIAL. © 2014, 2008 The McGraw-Hill Companies, Inc. All rights reserved. No part of this PowerPoint slide may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this PowerPoint slide, you are using it without permission.

47

@ McGraw-Hill Education

Statics and Manipulator Design (Ch. 7)

Introduction to ROBOTICS S K Saha

PROPRIETARY MATERIAL. © 2014, 2008 The McGraw-Hill Companies, Inc. All rights reserved. No part of this PowerPoint slide may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this PowerPoint slide, you are using it without permission.

Principle of Virtual Work

$$\mathbf{w}_{e}^{T} \delta \mathbf{x} = \boldsymbol{\tau}^{\mathrm{T}} \delta \boldsymbol{\theta} \qquad \dots (7.28)$$

 Relation between two virtual displacements (Can be derived from velocity expression)

$$\delta \mathbf{x} = \mathbf{J} \delta \mathbf{\theta} \qquad \dots (7.29)$$
$$\mathbf{w}_{e}^{T} \mathbf{J} \delta \mathbf{\theta} = \mathbf{\tau}^{T} \delta \mathbf{\theta} \implies \mathbf{w}_{e}^{T} \mathbf{J} = \mathbf{\tau}^{T} \dots (7.31)$$
$$\mathbf{\tau} = \mathbf{J}^{T} \mathbf{w}_{e} \qquad \dots (7.32)$$

@ McGraw-Hill Education

Example: 2-link RR Planar Arm

$$\tau_{1} = [\mathbf{e}_{1}]_{1}^{T} [\mathbf{n}_{01}]_{1}$$

$$= a_{1}f_{x}s\theta_{2} + (a_{2} + a_{1}c\theta_{2})f_{y}$$

$$\tau_{2} = [\mathbf{e}_{2}]_{2}^{T} [\mathbf{n}_{12}]_{2} = a_{2}f_{y}$$

$$\mathbf{\tau} = \mathbf{J}^{T}\mathbf{f}$$

$$\tau = \begin{bmatrix} \tau_{1} \\ \tau_{2} \end{bmatrix} \quad \mathbf{J}^{T} = \begin{bmatrix} a_{1}s\theta_{2} & a_{1}c\theta_{2} + a_{2} & 0 \\ 0 & a_{2} & 0 \end{bmatrix} \quad \mathbf{f} = \begin{bmatrix} f_{x} \\ f_{y} \\ 0 \end{bmatrix}$$

Two Jacobian Matrices

• From Statics $\mathbf{J} \equiv \begin{bmatrix} a_1 s \theta_2 & 0 \\ a_1 c \theta_2 + a_2 & a_2 \\ 0 & 0 \end{bmatrix}$

• From Kinematics $\mathbf{J} \equiv \begin{bmatrix} -a_1s_1 - a_2s_{12} & -a_2s_{12} \\ a_1c_1 + a_2c_{12} & a_2c_{12} \end{bmatrix}$

Jacobian from Statics in Frame 1

$$\begin{bmatrix} \mathbf{J} \end{bmatrix}_{1} = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 \\ s\theta_{1} & c\theta_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 \\ s\theta_{2} & c\theta_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{1}s\theta_{2} & 0 \\ a_{1}c\theta_{2} + a_{2} & a_{2} \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -a_{1}s\theta_{1} - a_{2}s\theta_{12} & -a_{2}s\theta_{12} \\ a_{1}c\theta_{1} + a_{2}c\theta_{12} & a_{2}c\theta_{12} \\ 0 & 0 \end{bmatrix} \dots (7.34)$$

 Without the last row, it is the same as the one from kinematics ← Should be!

Manipulator Design

- High investment in robot usage → low technological level of mechanical structure
- Functional Requirements
- Kinetostatic Measures
- Structural Design and Dynamics
- Economics

@ McGraw-Hill Education

Functional Requirements of a Robot

- Payload
- Mobility
- Configuration

Figure 7.6 A tilt and roll device provides additional DOF to the robot system

- Speed, Accuracy and Repeatability
- Actuators and Sensors

Figure 7.7 Workspace of a 2-DOF RP planar manipulator

$$b_{\min} \le b \le b_{\max}$$
, for $0^{\circ} \le \theta \le 360^{\circ}$

Dexterity and Manipulability

• Dexterity $\rightarrow w_d = \det(\mathbf{J})$... (7.44)

• Manipulability
$$\rightarrow w_m = \sqrt{\det(\mathbf{J}\mathbf{J}^T)}$$

Nonredundant manipulator

 Square
 Jacobian

$$w_m = |\det(\mathbf{J})| \qquad w_d = w_m$$

Motor Selection (Thumb Rule)

- Rapid movement with high torques (> 3.5 kW): Hydraulic actuator
- < 1.5 kW (no fire hazard): Electric motors
- 1-5 kW: Availability or cost will determine the choice

Simple Calculation

- 2 m robot arm to lift 25 kg mass at 10 rpm
- Force = 25 x 9.81 = 245.25 N
- Torque = 245.25 x 2 = 490.5 Nm
- Speed = $2\pi \times 10/60 = 1.047$ rad/sec
- Power = Torque x Speed = 0.513 kW
- Simple but sufficient for approximation

@ McGraw-Hill Education

Practical Application

Subscript *l* for load; *m* for motor; $G = \omega_l / \omega_m (< 1); \eta$: Motor + Gear box efficiency

Accelerations & Torques

Ang. accn. during t_1 : $\alpha_l = \frac{\omega_a - \omega_l}{t_l}$ Ang. accn. during t_2 : Zero (Const. Vel.) Ang. accn. during t_3 : $\alpha_3 = \frac{\alpha_b - 0}{t_3}$ Torque during t_1 : $T_1 = (I_m + \frac{G^2}{n} I_i) \alpha_i + T_f \frac{G}{n}$ Torque during t_2 : $T_2 = T_f \frac{G}{n}$ Torque during t_3 : $T_3 = (I_m + \frac{G^2}{n}I_i)\alpha_3 - T_f \frac{G}{n}$

RMS Value

$$T_{Rms} = \sqrt{\frac{(I_1 \times t_1) + (I_2 \times t_2) + (I_3 \times t_3) + (zero)t_4}{t_1 + t_2 + t_3 + t_4}}$$

@ McGraw-Hill Education

Motor Performance

Final Selection

- Peak speed and peak torque requirements, where T_{Peak} is max of (magnitudes) T₁, T₂, and T₃
- Use individual torque and RMS values
 + Performance curves provided by the manufacturer.
- Check heat generation + natural frequency of the drive.

Dynamics and Control Measures

Rule of Thumb

$$\omega_n \leq \frac{1}{2}\omega_r \qquad \dots (7.51)$$

- ω_n : closed-loop natural frequency
- ω_r : lowest structural resonant frequency

Manipulator Stiffness

Link Material Selection

• Mild (low carbon) steel:

 $S_y = 350 \text{ Mpa}; S_u = 420 \text{ Mpa}$

• High alloyed steel

 $S_y = 1750-1900 \text{ Mpa}; S_u = 2000-2300 \text{ Mpa}$

- Aluminum
- $S_y = 150-500 \text{ Mpa}; S_u = 165-580 \text{ Mpa}$

Driver Selection

- Driver of a DC motor: A hardware unit which generates the necessary current to energize the windings of the motor
- Commercial motors come with matching drive systems

Summary

- Forward Kinematics
- Inverse kinematics
 - A spatial 6-DOF wrist-portioned has 8 solutions
- Velocity and Jacobian
- Mechanical Design

saha@mech.iitd.ac.in http://sksaha.com