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Pose  Position + Rotation

Translation: 3

Rotation: 3

Total: 6 

A moving body  Pose or Configuration
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Position Description

p = px x + py y + pz z . . . (5.9)
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Orientation Description

1. Direction cosine representation

2. Fixed-axes rotations

3. Euler angles representation

4. Single- and double-axes rotations

5. Euler parameters representation

I will illustrate the first TWO only
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u = ux x + uy y + uz z

. . . (5.11a)

v = vx x + vy y + vz z

. . . (5.11b)

w = wx x + wy y + wz z  

. . . (5.11c)

Direction Cosine Representation

Refer to Fig. 5.12

p = puu + pvv + pww

. . . (5.12)
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p = (puux + pvvx + pwwx)x + (puuy + pvvy + pwwy)y

+ (puuz + pvvz + pwwz)z . . . (5.13)

px = uxpu + vxpv + wxpw . . . (5.14a)

py = uypu + vypv + wypw . . . (5.14b)

pz = uzpu + vzpv + wzpw . . . (5.14c)

Substitute eqs. (5.11a-c) into eq. (5.12)

[p]F = Q [p]M                                                    . . . (5.15)
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[p]F = Q [p]M                                                                        . . . (5.15)
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uTu = vTv = wTw = 1, and 

uTv(vTu) = uTw(wTu) = vTw(wTv) = 0    … (5.17)                            

Q is called Orthogonal

Orientation description 1
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u  v = w,    v  w = u, and     w  u = v . . . (5.18)

QTQ = QQT = 1 ;  det (Q) = 1;  Q1 = QT . . . (5.19)

Due to orthogonality
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. . . (5.20)

Example 5.6 Rotations [Elementary] (Fig. 5.13a)
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Non-commutative Property: An Illustration

Fig. 5.20 Successive rotation of a box about Z and Y-axes
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Non-commutative Property (contd.)

Fig. 5.21 Successive rotation of a box about Y and Z-axes
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Recap

• Orientation representations

– Non-commutative

• Direction cosines: Has disadv. of 9 param.

• Fixed-axes (RPY) rotations (12 sets)
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Homogeneous Transformation
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Task: Point P is known in moving frame M. Find P in fixed frame F.

Fig. 5.23 Two coordinate frames
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p = o + p . . . (5.45)

[p]F = [o]F + Q[p’]M . . . (5.46)
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MF ][][ pTp  . . . (5.48)

Homogenous Transformation
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TTT  1 or T1  TT . . . (5.49)
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Example 5.10 Pure Translation

T: Homogenous transformation matrix (4  4)

Fig. 5.24 (a)
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. . . (5.52)

Example 5.11 Pure Rotation
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Fig. 5.24 (b)
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Like rotation matrices homogeneous transformation 

matrices are non-commutative, i. e., 

Non-commutative Property

TATB  TBTA
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Denavit and Hartenberg (DH) Parameters

• Serial chain 

- Two links connected 

by revolute or 

prismatic joint

• Four parameters
– Joint offset (b)

– Joint angle ()

– Link length (a)

– Twist angle ()

Fig. 5.27 Serial manipulator
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• Joint axis i: Link i-1 + link i

• Link i: Fixed to frame i+1 (Saha) / frame i (Craig)

DH Variables

bi and i

[Screw@Z]

Constants

ai and i

[Screw@X]

Saha XiXi+1@Zi ZiZi+1@Xi+1

Craig Xi-1Xi@Zi ZiZi+1@Xi

Z’’’i

Zi+1
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• bi (Joint offset): Length of the intersections of the 

common normals on the joint axis Zi, i.e., Oi and 

Oi. It is the relative position of links i  1 and i. 

This is measured as the distance between Xi

and Xi + 1 along Zi.

Z’’’i

Zi+1
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• i (Joint angle): Angle between the orthogonal projections of 

the common normals, Xi and Xi + 1, to a plane normal to the 

joint axes Zi. Rotation is positive when it is made counter 

clockwise. It is the relative angle between links i  1 and i. 

This is measured as the angle between Xi and Xi + 1 about Zi.

Z’’’i

Zi+1
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• ai (Link length): Length between the O’i and    Oi

+1. This is measured as the distance between 

the common normals to axes Zi and Zi + 1 along 

Xi + 1.

Z’’’i

Zi+1
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• i (Twist angle): Angle between the orthogonal 

projections of joint axes, Zi and Zi+1 onto a plane 

normal to the common normal. This is measured as 

the angle between the axes, Zi and Zi + 1, about axis Xi

+ 1 to be taken positive when rotation is made counter 

clockwise.

Z’’’i

Zi+1
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Revolute Joint

Fig. 5.28

• DH@Z (Variable)
– Joint offset (b)

– Joint angle ()

• DH@X (Const.)
– Link length (a)

– Twist angle ()

Z’’’i

Zi+1
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Tb =
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Mathematically
• Translation along Zi

• Rotation about Zi
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• Translation along Xi+1

• Rotation about Xi+1
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Ti = TbTTaT . . . (5.61a)

Ti =























1000

0 iii

iiiiiii

iiiiiii

bCαSα

SθaSαCθCαCθSθ

CaSαSθCαSθCθ 

. . . (5.61b)

• Total transformation from Frame i to Frame i+1

Rotation 

Matrix

P
o

s
itio

n

Do it yourself!
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Spherical-type Arm

• DH-parameters

Link bi i ai i

1 0 1 (JV) 0 /2

2 b2 2 (JV) 0 /2

3 b3

(JV)

0 0 0

Fill-up the DH parameters

Fig. 5.32 A spherical arm

C:/Users/SAHA/Desktop/RoboAnalyzer.lnk
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PUMA 560

i Variable 

DH

Constant 

DH

bi i ai i

1 0 1 0 -/2

2 0 2 a2 0

3 B3 3 a3 -/2

4 b4 4 0 /2

5 0 5 0 -/2

6 0 6 0 0

Fig. 5.35 PUMA 560 and its frames
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Forward and Inverse Kinematics 

(Ch. 6)
by

S.K. Saha
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Forward and Inverse Kinematics

Inverse: 1st soln.

.

Inverse: nth soln.

Forward: One soln.
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Three-link Planar Arm

Ti =
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• DH-parameters

, for i=1,2,3

Link bi i ai i

1 0 1 (JV) a1 0

2 0 2 (JV) a2 0

3 0 3 (JV) a3 0

• Frame transformations

(Homogeneous)

Fill-up the DH 

parameters

Fill-up with the elements 

Fig. 5.29 A three-link planar arm
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DH Parameters of Articulated Arm

Link bi i ai i

1 0 1 (JV) 0  π/2

2 0 2 (JV) a2 0

3 0 3 (JV) a3 0
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Matrices for Articulated Arm
1 1
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T … (6.11)

../../roboanalyzer/RoboAnalyzer6/RoboAnalyzer6.exe
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Inverse Kinematics

• Unlike Forward Kinematics, general solutions 

are not possible.

• Several architectures are to be solved 

differently.
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Two-link Arm
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../../roboanalyzer/RoboAnalyzer6/RoboAnalyzer6.exe
../../../../saha-software/roboanalyzer/RoboAnalyzer 7.1
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Inverse Kinematics of 3-DOF RRR Arm

321 θθθφ 

123312211 cacacapx 

123312211 sasasapy 

122113 cacac φ apw xx 

122113 sasas φ apw yy 

… (6.18a)

… (6.18b)

… (6.18c)

… (6.19a)

… (6.19b)
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w2
x + w2

y = a1
2+ a2

2 + 2 a1a2c2
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1 = atan2 (s1, c1) . . . (6.23c)

3 =  - 1  2 . . . (6.24)

… (6.22a)

… (6.22b)

… (6.20a)

… (6.20b,c)

… (6.23a,b)
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Numerical Example

3 5

2 2

3 3
1

2 2
T

 
  

 
 

  
 
 
 
 

1
0 3

2

1
0

2

0 0 1 0

0 0 0 1

• An RRR planar arm (Example 6.15). Input

where  = 60o, and a1 = a2 = 2 units, and a3 = 1 unit.

Rotation 

Matrix

Origin 

of  end-

effector

frame

4.23

1.86

0

Do it yourself  Verify using RoboAnalyzer

../../roboanalyzer/RoboAnalyzer6/RoboAnalyzer6.exe
C:/Users/SAHA/Desktop/RoboAnalyzer.lnk
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Using eqs. (6.13b-c), c2 = 0.866, and s2 = 0.5,

Next, from eqs. (6.16a-b), s1 = 0, and c1= 0.866.

Finally, from eq. (6.17) ,

Therefore …(6.30b)

The positive values of s2 was used in evaluating 2 = 30o.

The use of negative value would result in :

…(6.30c)

2 = 30o 

1 = 0o. 

3 = 30o.

1 = 0o 2 = 30o, and 3 = 30

1 = 30o 2 = -30o, and 3 = 60o

../../roboanalyzer/RoboAnalyzer6/RoboAnalyzer6.exe
../../../book/robotics/revision07-08/ch6ikin3.m
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Watch 

• Forward and Inverse Kinematics: Watch 3/3 of 

IGNOU Lectures [29min]

https://www.youtube.com/watch?v=duKD8cvtBTI

• For more clarity: Watch 12 of Addis Ababa 

Lectures [77 min]

[https://www.youtube.com/watch?v=NXWzk1toze4

• Robotics (13 of Addis Ababa Lectures): Inverse 

Kinematics [82 min]

https://www.youtube.com/watch?v=ulP3YiJLiEM

https://www.youtube.com/watch?v=duKD8cvtBTI
https://www.youtube.com/watch?v=NXWzk1toze4
https://www.youtube.com/watch?v=ulP3YiJLiEM


@ McGraw-Hill Education                                           

44

Velocity Analysis
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Jacobian maps joint rates into end-effector’s velocities. It 

depends on the manipulator configuration. 













nee1e aeaeae

eee
J

n2

n221

1




. . (6.86)
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Jacobian of a 2-link Planar Arm

 ee 2211 aeaeJ 

1 1 2 12 2 12

1 1 2 12 2 12

Hence, J
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Example: Singularity of 2-link RR Arm
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Statics and Manipulator 

Design (Ch. 7)
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Principle of Virtual Work

• Relation between two virtual displacements 

(Can be derived from velocity expression)

θτxw  TT
e

θJx 

θτθJw  TT
e

TT

e τJw 

e

T
wJτ 

… (7.28)

… (7.29)

… (7.32)

… (7.31)
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Example: 2-link RR Planar Arm

1 1 1 01 1
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Two Jacobian Matrices

• From 

Statics
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a acθa

sθa
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• From 

Kinematics 
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Jacobian from Statics in Frame 1
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… (7.34)

• Without the last row, it is the same as 

the one from kinematics  Should be!
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Manipulator Design 

• High investment in robot usage low 

technological level of mechanical structure

• Functional Requirements

• Kinetostatic Measures

• Structural Design and Dynamics

• Economics
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Functional Requirements of a 

Robot

• Payload

• Mobility

• Configuration

• Speed, Accuracy and Repeatability

• Actuators and Sensors
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bmin  b  bmax, for 0 360o o 
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• Dexterity 

• Manipulability 

• Nonredundant manipulator  square 

Jacobian

Dexterity and Manipulability

det( )Jdw

det( )T

mw  JJ

det( )mw  J d mw w

… (7.44)
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Motor Selection (Thumb Rule) 

• Rapid movement with high torques (> 

3.5 kW): Hydraulic actuator

• < 1.5 kW (no fire hazard): Electric 

motors

• 1-5 kW: Availability or cost will  

determine the choice
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Simple Calculation

2 m robot arm to lift 25 kg mass at 10 

rpm

• Force = 25 x 9.81 = 245.25 N 

• Torque = 245.25 x 2 = 490.5 Nm

• Speed = 2 x 10/60 = 1.047 rad/sec

• Power = Torque x Speed = 0.513 kW

• Simple but sufficient for approximation
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Practical Application

Subscript l for load; m for motor;

G = l/m (< 1); : Motor + Gear box efficiency

Trapezoidal 
Trajectory
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Accelerations & Torques

Ang. accn. during t1: 

Ang. accn. during t3: 

Ang. accn. during t2: Zero (Const. Vel.) 

Torque during t1: T1 =

Torque during t2: T2 =

Torque during t3: T3 =
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RMS Value
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Motor Performance 
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Final Selection

• Peak speed and peak torque 

requirements , where TPeak is max of 

(magnitudes) T1, T2, and T3

• Use individual torque and RMS values 

+ Performance curves provided by the 

manufacturer.

• Check heat generation + natural 

frequency of the drive. 
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Dynamics and Control 

Measures

1

2
n r 

• Rule of Thumb

n

r

: closed-loop natural frequency

: lowest structural resonant frequency

… (7.51)
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Manipulator Stiffness

2

1 2

1 1 1

ek k k
  ek 

 

equivalent stiffness

gear ratio 
… (7.48)
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Link Material Selection

• Mild (low carbon) steel: 

Sy = 350 Mpa; Su = 420 Mpa

• High alloyed steel

Sy = 1750-1900 Mpa; Su = 2000-2300 

Mpa

• Aluminum

• Sy = 150-500 Mpa; Su = 165-580 Mpa
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Driver Selection

• Driver of a DC motor: A hardware unit 

which generates the necessary current 

to energize the windings of the motor

• Commercial motors come with 

matching drive systems
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Summary

• Forward Kinematics

• Inverse kinematics

– A spatial 6-DOF wrist-portioned has 8 

solutions

• Velocity and Jacobian

• Mechanical Design
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Thank You
saha@mech.iitd.ac.in

http://sksaha.com

http://web.iitd.ac.in/~saha

